Nonparametric estimation in a semimartingale regression model. Part 2. Robust asymptotic efficiency
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2009), pp. 31-45
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we prove the asymptotic efficiency of the model selection procedure proposed by the authors in [1]. To this end we introduce the robust risk as the least upper bound of the quadratical risk over a broad class of observation distributions. Asymptotic upper and lower bounds for the robust risk have been derived. The asymptotic efficiency of the procedure is proved. The Pinsker constant is found.
Keywords: Non-parametric regression; Model selection; Sharp oracle inequality; Robust risk; Asymptotic efficiency; Pinsker constant; Semimartingale noise.
@article{VTGU_2009_4_a2,
     author = {V. V. Konev and S. M. Pergamenshchikov},
     title = {Nonparametric estimation in a semimartingale regression model. {Part~2.} {Robust} asymptotic efficiency},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {31--45},
     year = {2009},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2009_4_a2/}
}
TY  - JOUR
AU  - V. V. Konev
AU  - S. M. Pergamenshchikov
TI  - Nonparametric estimation in a semimartingale regression model. Part 2. Robust asymptotic efficiency
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2009
SP  - 31
EP  - 45
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTGU_2009_4_a2/
LA  - en
ID  - VTGU_2009_4_a2
ER  - 
%0 Journal Article
%A V. V. Konev
%A S. M. Pergamenshchikov
%T Nonparametric estimation in a semimartingale regression model. Part 2. Robust asymptotic efficiency
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2009
%P 31-45
%N 4
%U http://geodesic.mathdoc.fr/item/VTGU_2009_4_a2/
%G en
%F VTGU_2009_4_a2
V. V. Konev; S. M. Pergamenshchikov. Nonparametric estimation in a semimartingale regression model. Part 2. Robust asymptotic efficiency. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2009), pp. 31-45. http://geodesic.mathdoc.fr/item/VTGU_2009_4_a2/

[1] Konev, V.V. and Pergamenshchikov, S.M., “Nonparametric estimation in a semimartingale regression model. Part 1. Oracle Inequalities”, Vestnik TGU. Matematika i mehanika, 2009, no. 3(7), 23–41

[2] Galtchouk, L. and Pergamenshchikov, S., “Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression”, J. Korean Statist. Soc., 2009 | MR | Zbl

[3] Galtchouk, L. and Pergamenshchikov, S., “Asymptotically efficient estimates for non parametric regression models”, Statistics and Probability Letters, 76:8 (2006), 852–860 | DOI | MR | Zbl

[4] Brua, J., “Asymptotically efficient estimators for nonparametric heteroscedastic regression models”, Stat. Methodol., 6:1 (2009), 47–60 | DOI | Zbl

[5] Konev, V.V. and Pergamenshchikov, S.M., “General model selection estimation of a periodic regression with a Gaussian noise”, Annals of the Institute of Statistical Mathematics, 2008 | DOI

[6] Galtchouk, L. and Pergamenshchikov, S., Adaptive asymptotically efficient estimation in heteroscedastic nonparametric regression via model selection, , 2009 http://hal.archives-ouvertes.fr/hal-00326910/fr/ | MR | Zbl

[7] Galtchouk, L. and Pergamenshchikov, S., “Sharp non-asymptotic oracle inequalities for nonparametric heteroscedastic regression models”, J. Nonparametric Statist., 21:1 (2009), 1–18 | DOI | MR | Zbl

[8] Pinsker, M.S., “Optimal filtration of square integrable signals in gaussian white noise”, Problems Information Transmis., 16:2 (1980), 120–133 | MR | Zbl

[9] Nussbaum, M., “Spline smoothing in regression models and asymptotic efficiency in $L_2$”, Ann. Statist., 13 (1985), 984–997 | DOI | MR | Zbl

[10] Gill, R.D. and Levit, B.Y., “Application of the van Trees inequality: a Bayesian Cramér-Rao bound”, Bernoulli, 1 (1995), 59–79 | DOI | MR | Zbl

[11] Liptser, R. Sh. and Shiryaev, A.N., Statistics of Random Processes. I. General theory, Springer, NY, 1977 | MR | Zbl

[12] Fourdrinier, D. and Pergamenshchikov, S., “Improved selection model method for the regression with dependent noise”, Annals of the Institute of Statistical Mathematics, 59:3 (2007), 435–464 | DOI | MR | Zbl

[13] Galtchouk, L. and Pergamenshchikov, S., “Nonparametric sequential estimation of the drift in diffusion processes”, Math. Meth. Statist., 13:1 (2004), 25–49 | MR | Zbl