Mots-clés : univalent conformal maps.
@article{VTGU_2009_4_a1,
author = {A. I. Aleksandrov and I. A. Aleksandrov and L. S. Kopaneva and G. A. Yuferova},
title = {The {Bieberbach} conjecture and the {Milin} conjecture},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {7--30},
year = {2009},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2009_4_a1/}
}
TY - JOUR AU - A. I. Aleksandrov AU - I. A. Aleksandrov AU - L. S. Kopaneva AU - G. A. Yuferova TI - The Bieberbach conjecture and the Milin conjecture JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2009 SP - 7 EP - 30 IS - 4 UR - http://geodesic.mathdoc.fr/item/VTGU_2009_4_a1/ LA - ru ID - VTGU_2009_4_a1 ER -
%0 Journal Article %A A. I. Aleksandrov %A I. A. Aleksandrov %A L. S. Kopaneva %A G. A. Yuferova %T The Bieberbach conjecture and the Milin conjecture %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2009 %P 7-30 %N 4 %U http://geodesic.mathdoc.fr/item/VTGU_2009_4_a1/ %G ru %F VTGU_2009_4_a1
A. I. Aleksandrov; I. A. Aleksandrov; L. S. Kopaneva; G. A. Yuferova. The Bieberbach conjecture and the Milin conjecture. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2009), pp. 7-30. http://geodesic.mathdoc.fr/item/VTGU_2009_4_a1/
[1] Bieberbach L., “Über die Koeffizienten derjenigen Potenzreihen welche eine schlichte Abbildung des Einheitskreises vermitteln, sitzungsber”, Preuss. Akad. Wiss. Phys. Math. Kl., 138 (1916), 940–955
[2] Löwner K., “Untersuchungen uber schlichte konforme Abbildung des Einheitskreises. I”, Math. Ann., 89 (1923), 103–121 | DOI | MR | Zbl
[3] Littlewood J.E., “On inequalities of the theory of functions”, Proc. London Math. Soc., 23 (1925), 481–519 | DOI | MR | Zbl
[4] Fekete S., “Eine Bemerkung uber ungerade Funktionen”, J. London Math. Soc., 8 (1933), 85–89 | DOI | Zbl
[5] Goluzin G.M., “O koeffitsientakh odnolistnykh funktsii”, Matem. sb., 22(64):3 (1948), 373–380 | MR | Zbl
[6] Bazilevich I.E., “O teoremakh iskazheniya i koeffitsientakh odnolistnykh funktsii”, Matem. sb., 28(70):1 (1951), 147–164 | MR | Zbl
[7] Garabedian P.R., Shiffer M.A., “A proof of the Bieberbach conjecture for the fourth coefficient”, J. Ration. Mech. Anal., 4 (1955), 427–465 | MR | Zbl
[8] Milin M.M., “Otsenka koeffitsientov odnolistnykh funktsii”, DAN SSSR, 160:4 (1965), 769–771 | MR | Zbl
[9] Pederson R.N., “A proof of the Bieberbach conjecture for the sixth coefficient”, Arch. Ration. Mech. and Anal., 31 (1968), 331–351 | DOI | MR | Zbl
[10] Ozawa M., “An elementary proof of the Bieberbach conjecture for the sixth coefficient”, Kodai Math. Semin. Repts., 21 (1969), 129–132 | DOI | MR | Zbl
[11] Pederson R.N., Shiffer M.A., “A proof of the Bieberbach conjecture for the fifth coefficient”, Arch. Ration. Mech. and Anal., 45 (1972), 161–193 | DOI | MR | Zbl
[12] Fitzgerald C.H., “Exponentiation of certain quadratic inequalities for schlicht functions”, Bull. Amer. Math. Soc., 78 (1972), 209–210 | DOI | MR | Zbl
[13] Horoviz D., “A refinement for coefficient estimates of univalent functions”, Proc. Amer. Math. Soc., 54 (1976), 176–178 | DOI | MR
[14] Lowner K., “Untersuchungen uber die Verzerrung bei konformen Abbildung des Einheitskreises $|z|1$, die durch Funktionen mit nicht verschwinden der Ableitung geliefert warden”, Leipziger Berichter, 69 (1917), 89–106 | Zbl
[15] Nevanlinna R., “Über die Konforme Abbildung von Sterngebieten”, Ofvers Finska Vet. Soc. Forh., 53(A):6 (1921)
[16] Dieudonne, “Sur les functions univalentes”, C.R., 192 (1931), 1148–1150 | Zbl
[17] Kaplan W., “Close-to-convex schlicht functions”, Michigan Math. J., 1:2 (1952), 169–185 | DOI | MR | Zbl
[18] Bazilevich I.E., “Oblasti nachalnykh koeffitsientov ogranichennykh odnolistnykh funktsii $r$-kratnoi simmetrii”, Matem. sb., 43:4 (1957), 409–428 | MR | Zbl
[19] Kufarev P.P., “Odno zamechanie ob ekstremalnykh zadachakh teorii odnolistnykh funktsii”, Uchenye zapiski Tomskogo universiteta, 14 (1950), 3–4
[20] Kufarev P.P., “Ob odnom svoistve ekstremalnykh oblastei zadachi koeffitsientov”, DAN SSSR, 97:3 (1954), 391–393 | MR | Zbl
[21] Kufarev P.P., “Odno zamechanie k zadache koeffitsientov”, Uchenye zapiski Tomskogo universiteta, 25 (1955), 15–18 | MR
[22] Kheiman K., Mnogolistnye funktsii, IL, M., 1960
[23] Milin I.M., Odnolistnye funktsii i ortonormirovannye sistemy, Nauka, M., 1971, 256 pp. | MR | Zbl
[24] Bazilevich I.E., “O dispersii koeffitsientov odnolistnykh funktsii”, Matem. sb., 68(110):4 (1965), 549–560 | Zbl
[25] Shirokov N.A., “Teorema regulyarnosti Kheimana”, Zap. nauchn. semin. LOMI AN SSSR, 24, 1972, 182–200 | MR | Zbl
[26] Lebedev N.A., Milin I.M., “Ob odnom neravenstve”, Vestnik Leningradskogo universiteta, 19 (1965), 157–158 | MR | Zbl
[27] Milin I.M., “O koeffitsientakh odnolistnykh funktsii”, DAN SSSR, 176:5 (1967), 1015–1018 | MR | Zbl
[28] Grinshpan A.Z., “Koeffitsienty neravenstva dlya konformnykh otobrazhenii s gomeomorfnym prodolzheniem”, Sibirskii matem. zhurnal, 26:1 (1985), 49–65 | MR | Zbl
[29] Grinshpan A.Z., “Odnolistnye funktsii i regulyarno izmerimye otobrazheniya”, Sibirskii matem. zhurnal, 27:6 (1986), 50–64 | MR | Zbl
[30] Fitzgerald C.N., “Quadratic inequalities and coefficient estimates for schlicht function”, Arch. Rational. Mech. and Anal., 46:5 (1972), 356–368 | DOI | MR | Zbl
[31] Milin I.M., Odnolistnye funktsii i ortonormirovannye sistemy, Nauka, M., 1971 | MR | Zbl
[32] Branges L., A proof of the Bieberbach conjecture, LOMI preprintes, E. 5-84, 21 pp.
[33] Aleksandrov I.A., “Dokazatelstvo L. de Branzha gipotezy I.M. Milina i gipotezy L. Biberbakha”, Sibirskii matem. zhurnal, 28:2 (1987), 7–20 | MR | Zbl
[34] Aleksandrov I.A., Milin I.M., “O gipoteze Biberbakha i logarifmicheskikh koeffitsientakh odnolistnykh funktsii”, Izv. vuzov. Matematika, 1989, no. 8(327), 3–15 | MR
[35] Sadritdinova G.D., “Oblasti s razrezami i svoistva upravlyayuschikh funktsii v uravnenii Levnera”, Tez. dokl. Mezhdunar. konf. po matem. i mekhanike, TGU, Tomsk, 2003
[36] Yuferova G.A., “Uravnenie Levnera i ortogonalnye mnogochleny”, Vestnik TGU, 2007, no. 298, 121–124
[37] Aleksandrov I.A., Aleksandrov A.I., Kasatkina T.V., “Funktsional Milina i polinomy de Branzha”, Aktualnye problemy sovremennoi matematiki, 3, NII MIOO, Novosibirsk, 1997, 13–18 | Zbl
[38] Aleksandrov I.A., “Proizvodyaschaya funktsiya dlya polinomov de Branzha”, Teoriya funktsii i ee primeneniya, Tez. dokl. shkoly-konferentsii (15–22 iyunya 1995 g., g. Kazan), 1995, 4–6
[39] Weinstein L., “The Bieberbach conjecture”, Intern. Math. Res. Notices, 5 (1991), 61–64 | DOI | MR | Zbl
[40] Wilf H., “A footnote on two proof of the Bieberbach conjecture – de Branges Theorem”, Bull. London Math. Soc., 26 (1994), 61–63 | DOI | MR | Zbl
[41] Koef W., Schmersau D., Weinstain's functions and the Askey–Gasper indentity, URL: , 1996 http://www.opus.kobv.de/zib/volltexte/1996/217/ps/SC-96-06.ps
[42] Gradshtein I.S., Ryzhik I.M., Tablitsy integralov, summ, ryadov i proizvedenii, Fiziko-matematicheskaya literatura, M., 1951 | MR
[43] Aleksandrov I.A., Yuferova G.A., “Formula summirovaniya dlya polinomov Chebysheva i ee primenenie”, Vestnik TGU. Matematika i mekhanika, 2009, no. 2(6), 5–13
[44] Uitteker E.T., Vatson G.N., Kurs sovremennogo analiza, ch. 2, GTTN, M.; L., 1934
[45] Aleksandrov A.I., Aleksandrov I.A., “Tochnye otsenki proizvodnykh odnolistnykh funktsii”, Issledovaniya po matematicheskomu analizu i algebre, vyp. 3, TGU, Tomsk, 2001, 12–16
[46] Marty F., “Sur le module des coefficients de Maclaurin d'une function univalente”, Compt rend. Acad. Sci., 198 (1934), 1569–1571
[47] Littlewood J.E., Paley R.E., “A proof the an odd schlicht function has bounded coefficients”, J. London Math. Soc., s1-7:3 (1932), 167–169 | DOI
[48] Robertson M.S., “A mark on the odd schlicht functions”, Bull. Amer. Math. Soc., 42:6 (1936), 366–370 | DOI | MR | Zbl