Minimal non-holonomic torses of the sekond kind
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2009), pp. 42-55

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider non-holonomic smooth two-dimensional distributions of planes with zero mean curvature and zero total curvature of the second kind in the three- dimensional Euclidean space $E_3$. They are called minimal non-holonomic torses of the second kind ($MNT-2$). We prove that there exist three types of $MNT-2$ and study geometric properties of all these types.
Keywords: non-holonomic geometry, distribution of planes, vector field.
Mots-clés : Pfaffian equation
@article{VTGU_2009_3_a3,
     author = {N. M. Onishchuk and O. V. Tsokolova},
     title = {Minimal non-holonomic torses of the sekond kind},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {42--55},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2009_3_a3/}
}
TY  - JOUR
AU  - N. M. Onishchuk
AU  - O. V. Tsokolova
TI  - Minimal non-holonomic torses of the sekond kind
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2009
SP  - 42
EP  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2009_3_a3/
LA  - ru
ID  - VTGU_2009_3_a3
ER  - 
%0 Journal Article
%A N. M. Onishchuk
%A O. V. Tsokolova
%T Minimal non-holonomic torses of the sekond kind
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2009
%P 42-55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2009_3_a3/
%G ru
%F VTGU_2009_3_a3
N. M. Onishchuk; O. V. Tsokolova. Minimal non-holonomic torses of the sekond kind. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2009), pp. 42-55. http://geodesic.mathdoc.fr/item/VTGU_2009_3_a3/