Minimal non-holonomic torses of the sekond kind
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2009), pp. 42-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider non-holonomic smooth two-dimensional distributions of planes with zero mean curvature and zero total curvature of the second kind in the three- dimensional Euclidean space $E_3$. They are called minimal non-holonomic torses of the second kind ($MNT-2$). We prove that there exist three types of $MNT-2$ and study geometric properties of all these types.
Keywords: non-holonomic geometry, distribution of planes, vector field.
Mots-clés : Pfaffian equation
@article{VTGU_2009_3_a3,
     author = {N. M. Onishchuk and O. V. Tsokolova},
     title = {Minimal non-holonomic torses of the sekond kind},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {42--55},
     year = {2009},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2009_3_a3/}
}
TY  - JOUR
AU  - N. M. Onishchuk
AU  - O. V. Tsokolova
TI  - Minimal non-holonomic torses of the sekond kind
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2009
SP  - 42
EP  - 55
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2009_3_a3/
LA  - ru
ID  - VTGU_2009_3_a3
ER  - 
%0 Journal Article
%A N. M. Onishchuk
%A O. V. Tsokolova
%T Minimal non-holonomic torses of the sekond kind
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2009
%P 42-55
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2009_3_a3/
%G ru
%F VTGU_2009_3_a3
N. M. Onishchuk; O. V. Tsokolova. Minimal non-holonomic torses of the sekond kind. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2009), pp. 42-55. http://geodesic.mathdoc.fr/item/VTGU_2009_3_a3/

[1] Dubrovin B.A., Novikov S.P., Fomenko A.T., Sovremennaya geometriya, Nauka, M., 1979 | MR

[2] Vershik A.M., Gershkovich V.Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhniki, 16, VINITI, M., 1987, 5–85 | MR | Zbl

[3] Finikov S.P., Metod vneshnikh form Kartana, GITTL, M.; L., 1948

[4] Onischuk N.M., “Vektornye polya s nulevoi polnoi kriviznoi 2-go roda”, Issledovaniya po matematicheskomu analizu i algebre, Izd-vo Tom. un-ta, Tomsk, 1998, 107–112

[5] Byushgens S.S., Differentsialnaya geometriya, GITTL, M.; L., 1940

[6] Slukhaev V.V., Geometriya vektornykh polei, Izd-vo Tom. un-ta, Tomsk, 1982