Minimal non-holonomic torses of the sekond kind
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2009), pp. 42-55
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider non-holonomic smooth two-dimensional distributions of planes with zero mean curvature and zero total curvature of the second kind in the three- dimensional Euclidean space $E_3$. They are called minimal non-holonomic torses of the second kind ($MNT-2$). We prove that there exist three types of $MNT-2$ and study geometric properties of all these types.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
non-holonomic geometry, distribution of planes, vector field.
Mots-clés : Pfaffian equation
                    
                  
                
                
                Mots-clés : Pfaffian equation
@article{VTGU_2009_3_a3,
     author = {N. M. Onishchuk and O. V. Tsokolova},
     title = {Minimal non-holonomic torses of the sekond kind},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {42--55},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2009_3_a3/}
}
                      
                      
                    TY - JOUR AU - N. M. Onishchuk AU - O. V. Tsokolova TI - Minimal non-holonomic torses of the sekond kind JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2009 SP - 42 EP - 55 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2009_3_a3/ LA - ru ID - VTGU_2009_3_a3 ER -
N. M. Onishchuk; O. V. Tsokolova. Minimal non-holonomic torses of the sekond kind. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2009), pp. 42-55. http://geodesic.mathdoc.fr/item/VTGU_2009_3_a3/
