Minimal non-holonomic torses of the sekond kind
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2009), pp. 42-55
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider non-holonomic smooth two-dimensional distributions of planes with zero mean curvature and zero total curvature of the second kind in the three- dimensional Euclidean space $E_3$. They are called minimal non-holonomic torses of the second kind ($MNT-2$). We prove that there exist three types of $MNT-2$ and study geometric properties of all these types.
Keywords:
non-holonomic geometry, distribution of planes, vector field.
Mots-clés : Pfaffian equation
Mots-clés : Pfaffian equation
@article{VTGU_2009_3_a3,
author = {N. M. Onishchuk and O. V. Tsokolova},
title = {Minimal non-holonomic torses of the sekond kind},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {42--55},
year = {2009},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2009_3_a3/}
}
N. M. Onishchuk; O. V. Tsokolova. Minimal non-holonomic torses of the sekond kind. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2009), pp. 42-55. http://geodesic.mathdoc.fr/item/VTGU_2009_3_a3/
[1] Dubrovin B.A., Novikov S.P., Fomenko A.T., Sovremennaya geometriya, Nauka, M., 1979 | MR
[2] Vershik A.M., Gershkovich V.Ya., “Negolonomnye dinamicheskie sistemy. Geometriya raspredelenii i variatsionnye zadachi”, Itogi nauki i tekhniki, 16, VINITI, M., 1987, 5–85 | MR | Zbl
[3] Finikov S.P., Metod vneshnikh form Kartana, GITTL, M.; L., 1948
[4] Onischuk N.M., “Vektornye polya s nulevoi polnoi kriviznoi 2-go roda”, Issledovaniya po matematicheskomu analizu i algebre, Izd-vo Tom. un-ta, Tomsk, 1998, 107–112
[5] Byushgens S.S., Differentsialnaya geometriya, GITTL, M.; L., 1940
[6] Slukhaev V.V., Geometriya vektornykh polei, Izd-vo Tom. un-ta, Tomsk, 1982