About Some Properties Of Mappings Of The Class $\tilde C_n(E)$
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2009), pp. 14-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study properties of holomorphics mappings in unity circle $E$. This mappings have expansion in a power series $z^n+az^{n+1}+\ldots$ and positive real part of $n$-derivative.
Keywords: holomorphics mappings, Levandowski class, Carateodori class.
Mots-clés : evalutions of coefficient
@article{VTGU_2009_3_a1,
     author = {E. G. Kir'yatskii},
     title = {About {Some} {Properties} {Of} {Mappings} {Of} {The} {Class~}$\tilde C_n(E)$},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {14--22},
     year = {2009},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2009_3_a1/}
}
TY  - JOUR
AU  - E. G. Kir'yatskii
TI  - About Some Properties Of Mappings Of The Class $\tilde C_n(E)$
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2009
SP  - 14
EP  - 22
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2009_3_a1/
LA  - ru
ID  - VTGU_2009_3_a1
ER  - 
%0 Journal Article
%A E. G. Kir'yatskii
%T About Some Properties Of Mappings Of The Class $\tilde C_n(E)$
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2009
%P 14-22
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2009_3_a1/
%G ru
%F VTGU_2009_3_a1
E. G. Kir'yatskii. About Some Properties Of Mappings Of The Class $\tilde C_n(E)$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2009), pp. 14-22. http://geodesic.mathdoc.fr/item/VTGU_2009_3_a1/

[1] Kiryatskii E.G., Mnogolistnye funktsii i razdelennye raznosti, Tekhnika, Vilnyus, 1995, 390 pp.

[2] Aleksandrov I.A., Metody geometricheskoi teorii analiticheskikh funktsii, Izd-vo Tom. un-ta, Tomsk, 2001, 35–39

[3] Zmorovich V.A., “K teorii spetsialnykh klassov odnolistnykh funktsii. I”, Uspekhi mat. nauk, 14:3 (1959), 137–143 | MR | Zbl

[4] Goluzin G.M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1960, 621 pp. | MR

[5] Ibragimov I.I., Metody interpolirovaniya funktsii i nekotorye ikh primeneniya, Nauka, M., 1971, 510 pp. | MR

[6] Stepanov V.V., Kurs differentsialnykh uravnenii, M., 1958, 468 pp.

[7] Titchmarsh E., Teoriya funktsii, M.; L., 1951, 507 pp.

[8] Kiryatskii E.G., Kasatkina T.V., “Ob odnom obobschenii klassa Levandovskogo”, Vestnik TGU, 2006, no. 290, 56–60