Numerical algorithm for constructing jet flows of a liquid of the hydrodynamic
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2009), pp. 5-13
Cet article a éte moissonné depuis la source Math-Net.Ru
This work dedicated learning simple jet flows in incompressible liquid. It is learning planar potential flow incompressible liquid in simply connected domain, consist a polygon and jet flows is leaning endpoint of a polygon. Thus, $P(T)$ coincides with $P$ if $T$ satisfies the functional equation $g(T,\alpha)=l, g=(g_1,\dots,g_n), g_k=\int_{t_k}^{t_{k+1}}|\Pi(t)M(t)|\,dt$, where $l=(l_1\ldots l_n)$ is the vector of side length of $P$ and $\alpha\pi=(\alpha_1\ldots\alpha_n)\pi$ is the vector of its interior angles. This proved local uniqueness of the solution equation describing these schemes.The algorithm is constructed and is proved his convergence.
Keywords:
analytical function, local uniqueness, jet flows.
@article{VTGU_2009_3_a0,
author = {Y. V. Gubkina},
title = {Numerical algorithm for constructing jet flows of a~liquid of the hydrodynamic},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--13},
year = {2009},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2009_3_a0/}
}
TY - JOUR AU - Y. V. Gubkina TI - Numerical algorithm for constructing jet flows of a liquid of the hydrodynamic JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2009 SP - 5 EP - 13 IS - 3 UR - http://geodesic.mathdoc.fr/item/VTGU_2009_3_a0/ LA - ru ID - VTGU_2009_3_a0 ER -
Y. V. Gubkina. Numerical algorithm for constructing jet flows of a liquid of the hydrodynamic. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2009), pp. 5-13. http://geodesic.mathdoc.fr/item/VTGU_2009_3_a0/
[1] Monakhov V.N., Kraevye zadachi so svobodnymi granitsami dlya ellipticheskikh sistem uravnenii, Nauka, Novosibirsk, 1977 | MR
[2] Monakhov V.N., “O skhodimosti chislennogo metoda nepreryvnosti resheniya zadach gidrodinamiki so svobodnymi granitsami”, Sib. matem. zhurn., 44:5 (2003), 1082–1090 | MR | Zbl