The comparison of high-speed methods efficiency for solving a difference elliptical SLAE
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2009), pp. 71-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The comparative analysis of high-speed methods efficiency of solving a five-diagonal matrix system of linear algebraic equations (SLAE) that arises from difference approximation of two-dimensional viscous fluid dynamic and heat transfer equations is made. Solution convergence dynamic of the four test problems is discussed. The effective usage of the considered methods is analyzed.
Keywords: System of linear algebraic equations, iteration methods, difficult test problem.
@article{VTGU_2009_2_a8,
     author = {A. A. Fomin and L. N. Fomina},
     title = {The comparison of high-speed methods efficiency for solving a~difference elliptical {SLAE}},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {71--77},
     year = {2009},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2009_2_a8/}
}
TY  - JOUR
AU  - A. A. Fomin
AU  - L. N. Fomina
TI  - The comparison of high-speed methods efficiency for solving a difference elliptical SLAE
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2009
SP  - 71
EP  - 77
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2009_2_a8/
LA  - ru
ID  - VTGU_2009_2_a8
ER  - 
%0 Journal Article
%A A. A. Fomin
%A L. N. Fomina
%T The comparison of high-speed methods efficiency for solving a difference elliptical SLAE
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2009
%P 71-77
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2009_2_a8/
%G ru
%F VTGU_2009_2_a8
A. A. Fomin; L. N. Fomina. The comparison of high-speed methods efficiency for solving a difference elliptical SLAE. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2009), pp. 71-77. http://geodesic.mathdoc.fr/item/VTGU_2009_2_a8/

[1] Samarskii A.A., Nikolaev E.S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 590 pp.

[2] Samarskii A.A., Vabischevich P.N., Chislennye metody resheniya zadach konvektsii-diffuzii, Editorial URSS, M., 1999, 248 pp.

[3] Ilin V.P., Metody nepolnoi faktorizatsii dlya resheniya algebraicheskikh sistem, Fizmatlit, M., 1995, 288 pp.

[4] Zverev V.G., “Modifitsirovannyi polineinyi metod resheniya raznostnykh ellipticheskikh uravnenii”, ZhVM i MF, 38:9 (1998), 1553–1562 | MR | Zbl

[5] Van der Vorst H.A., “BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems”, SIAM J. Sci. Stat. Comput., 13:2 (1992), 631–644 | DOI | MR | Zbl

[6] Starchenko A.V., “Sravnitelnyi analiz nekotorykh iteratsionnykh metodov dlya chislennogo resheniya prostranstvennoi kraevoi zadachi dlya uravnenii ellipticheskogo tipa”, Vestnik TGU. Byulleten operativnoi nauchnoi informatsii, 2003, no. 10, 70–80, TGU, Tomsk | MR

[7] Fomin A.A., Fomina L.N., Polineinyi rekurrentnyi metod resheniya raznostnykh ellipticheskikh uravnenii, Dep. v VINITI 06.04.2007, No 385-V2007, KemGU, Kemerovo, 2007, 78 pp. | MR

[8] Fomin A.A., Fomina L.N., “Polineinyi rekurrentnyi metod resheniya SLAU s pyatidiagonalnoi matritsei”, Chetvertaya Sibirskaya shkola-seminar po parallelnym i vysokoproizvoditelnym vychisleniyam (Tomsk, 9–11 oktyabrya 2007 g.), Deltaplan, Tomsk, 2008, 192–201

[9] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat, M., 1984, 152 pp.