Starlike and close-to-convex the neighborhoods of meromorphic functions
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2009), pp. 67-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article are the sufficient conditions starlike of order $\alpha$ and close-to-convex the neighborhoods of meromorphic functions in the unit circle, which have simple pole in the centre of the circle.
Keywords: functions, starlike, close-to-convex, meromorphic, circle, class
Mots-clés : univalent, condition, convolution.
@article{VTGU_2009_2_a7,
     author = {P. I. Sizhuk and T. P. Sizhuk},
     title = {Starlike and close-to-convex the neighborhoods of meromorphic functions},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {67--70},
     year = {2009},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2009_2_a7/}
}
TY  - JOUR
AU  - P. I. Sizhuk
AU  - T. P. Sizhuk
TI  - Starlike and close-to-convex the neighborhoods of meromorphic functions
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2009
SP  - 67
EP  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2009_2_a7/
LA  - ru
ID  - VTGU_2009_2_a7
ER  - 
%0 Journal Article
%A P. I. Sizhuk
%A T. P. Sizhuk
%T Starlike and close-to-convex the neighborhoods of meromorphic functions
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2009
%P 67-70
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2009_2_a7/
%G ru
%F VTGU_2009_2_a7
P. I. Sizhuk; T. P. Sizhuk. Starlike and close-to-convex the neighborhoods of meromorphic functions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2009), pp. 67-70. http://geodesic.mathdoc.fr/item/VTGU_2009_2_a7/

[1] Ruscheveyh Stephan, “Neighborhoods of univalent functions”, Proc. Amer. Math. Soc., 81:4 (1981), 521–527 | DOI | MR

[2] Aleksandrov I.A., Metody geometricheskoi teorii funktsii, Tomskii gosudarstvennyi universitet, Tomsk, 2001, 220 pp.

[3] Robertson M.S., “On the theory of univalent functions”, Ann. Math., 37 (1936), 374–408 | DOI | MR | Zbl

[4] Libera R.J. and Robertson M.S., “Meromorphic close-to-convex functions”, Michigan. Math. J., 8 (1961), 167–175 | DOI | MR | Zbl