Starlike and close-to-convex the neighborhoods of meromorphic functions
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2009), pp. 67-70
Cet article a éte moissonné depuis la source Math-Net.Ru
In the article are the sufficient conditions starlike of order $\alpha$ and close-to-convex the neighborhoods of meromorphic functions in the unit circle, which have simple pole in the centre of the circle.
Keywords:
functions, starlike, close-to-convex, meromorphic, circle, class
Mots-clés : univalent, condition, convolution.
Mots-clés : univalent, condition, convolution.
@article{VTGU_2009_2_a7,
author = {P. I. Sizhuk and T. P. Sizhuk},
title = {Starlike and close-to-convex the neighborhoods of meromorphic functions},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {67--70},
year = {2009},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2009_2_a7/}
}
TY - JOUR AU - P. I. Sizhuk AU - T. P. Sizhuk TI - Starlike and close-to-convex the neighborhoods of meromorphic functions JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2009 SP - 67 EP - 70 IS - 2 UR - http://geodesic.mathdoc.fr/item/VTGU_2009_2_a7/ LA - ru ID - VTGU_2009_2_a7 ER -
P. I. Sizhuk; T. P. Sizhuk. Starlike and close-to-convex the neighborhoods of meromorphic functions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2009), pp. 67-70. http://geodesic.mathdoc.fr/item/VTGU_2009_2_a7/
[1] Ruscheveyh Stephan, “Neighborhoods of univalent functions”, Proc. Amer. Math. Soc., 81:4 (1981), 521–527 | DOI | MR
[2] Aleksandrov I.A., Metody geometricheskoi teorii funktsii, Tomskii gosudarstvennyi universitet, Tomsk, 2001, 220 pp.
[3] Robertson M.S., “On the theory of univalent functions”, Ann. Math., 37 (1936), 374–408 | DOI | MR | Zbl
[4] Libera R.J. and Robertson M.S., “Meromorphic close-to-convex functions”, Michigan. Math. J., 8 (1961), 167–175 | DOI | MR | Zbl