About some classes $n$-arity algebraic operations
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2009), pp. 48-54
Cet article a éte moissonné depuis la source Math-Net.Ru
In work are investigated some properties $n$-arity algebraic operations the concept binary-decompositionship, in particular, is entered. It is investigated binary-decompositionship of $n$-arity vector product.
Mots-clés :
group, endomorphism, vector multiplication, quaternions.
Keywords: the module, $n$-arity operation
Keywords: the module, $n$-arity operation
@article{VTGU_2009_2_a5,
author = {M. A. Prikhodovskij},
title = {About some classes $n$-arity algebraic operations},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {48--54},
year = {2009},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2009_2_a5/}
}
M. A. Prikhodovskij. About some classes $n$-arity algebraic operations. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2009), pp. 48-54. http://geodesic.mathdoc.fr/item/VTGU_2009_2_a5/
[1] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977
[2] Krylov P.A., Prikhodovskii M.A., “Obobschënnye $T$-moduli i $E$-moduli”, Universalnaya algebra i eë prilozheniya, Tr. uchast. Mezhdunar. seminara, posvyasch. pamyati L.A. Skornyakova ((Volgograd, 6–11 sent. 1999), Volgograd, 2000, 153–169
[3] Prikhodovskii M.A., “Primenenie mnogomernykh matrits dlya issledovaniya giperkompleksnykh chisel i konechnomernykh algebr”, Vestnik TGU, 2004, no. 284, 27–30
[4] Galmak A.M., “$N$-arnye gruppy”, Giperkompleksnye chisla v geometrii i fizike, 4:2(8) (2007), 76–95
[5] Kantor I.L., Solodovnikov A.S., Giperkompleksnye chisla, Nauka, M., 1973 | MR