A subfield $B$ of elements which are infinitely near to the base
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2009), pp. 41-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article a statement is proved that elements which are infinitely near to the base form a subfield of 2-dimensionally ordered field.
Keywords: two-ordered fields, elements which are infinitely near to the base.
@article{VTGU_2009_2_a4,
     author = {G. G. Pestov and E. A. Fomina},
     title = {A~subfield~$B$ of elements which are infinitely near to the base},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {41--47},
     year = {2009},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2009_2_a4/}
}
TY  - JOUR
AU  - G. G. Pestov
AU  - E. A. Fomina
TI  - A subfield $B$ of elements which are infinitely near to the base
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2009
SP  - 41
EP  - 47
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2009_2_a4/
LA  - ru
ID  - VTGU_2009_2_a4
ER  - 
%0 Journal Article
%A G. G. Pestov
%A E. A. Fomina
%T A subfield $B$ of elements which are infinitely near to the base
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2009
%P 41-47
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2009_2_a4/
%G ru
%F VTGU_2009_2_a4
G. G. Pestov; E. A. Fomina. A subfield $B$ of elements which are infinitely near to the base. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2009), pp. 41-47. http://geodesic.mathdoc.fr/item/VTGU_2009_2_a4/

[1] Pestov G.G., Dvumerno uporyadochennye polya, Tomsk, 2003

[2] Pestov G.G., Fomina E.A., “O secheniyakh v baze 2-uporyadochennogo polya”, Vestnik TGU, 2007, no. 301, 94–96