The Lowner’s and the Branges functions
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2009), pp. 100-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theorem about composition of convergent series and of the p-symmetric Koebe function is proved. The differential equation for powers of solution of Lowner’s equation with constant controlling function are obtained. To get the communication between the de Branges functions and Koebe functions.
Keywords: univalent functions, Lowner equation, Bieberbach conjecture.
@article{VTGU_2009_2_a11,
     author = {G. A. Yuferova},
     title = {The {Lowner{\textquoteright}s} and the {Branges} functions},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {100--108},
     year = {2009},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2009_2_a11/}
}
TY  - JOUR
AU  - G. A. Yuferova
TI  - The Lowner’s and the Branges functions
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2009
SP  - 100
EP  - 108
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2009_2_a11/
LA  - ru
ID  - VTGU_2009_2_a11
ER  - 
%0 Journal Article
%A G. A. Yuferova
%T The Lowner’s and the Branges functions
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2009
%P 100-108
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2009_2_a11/
%G ru
%F VTGU_2009_2_a11
G. A. Yuferova. The Lowner’s and the Branges functions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2009), pp. 100-108. http://geodesic.mathdoc.fr/item/VTGU_2009_2_a11/

[1] Aleksandrov I.A., Metody geometricheskoi teorii analiticheskikh funktsii, Tomskii gosudarstvennyi universitet, Tomsk, 2001, 220 pp.

[2] Prudnikov A.P., Brychkov Yu.A., Marychev O.I., Integraly i ryady, Nauka, M., 1981, 800 pp.

[3] Satritdinova G.D., “Ob odnom sluchae integrirovaniya uravneniya Levnera s simmetriei vrascheniya”, Dokl. RAN, 368 (1999), 462–463 | MR | Zbl

[4] Aleksandrov I.A., Aleksandrov A.I., Kasatkina T.V., “Funktsional Milina i polinomy de Branzha”, Sb. nauchnykh trudov, Aktualnye problemy sovremennoi matematiki, 3, Izd-vo NII MIDO, Novosibirsk, 1997, 13–18