The Lowner’s and the Branges functions
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2009), pp. 100-108
Cet article a éte moissonné depuis la source Math-Net.Ru
The theorem about composition of convergent series and of the p-symmetric Koebe function is proved. The differential equation for powers of solution of Lowner’s equation with constant controlling function are obtained. To get the communication between the de Branges functions and Koebe functions.
Keywords:
univalent functions, Lowner equation, Bieberbach conjecture.
@article{VTGU_2009_2_a11,
author = {G. A. Yuferova},
title = {The {Lowner{\textquoteright}s} and the {Branges} functions},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {100--108},
year = {2009},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2009_2_a11/}
}
G. A. Yuferova. The Lowner’s and the Branges functions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2009), pp. 100-108. http://geodesic.mathdoc.fr/item/VTGU_2009_2_a11/
[1] Aleksandrov I.A., Metody geometricheskoi teorii analiticheskikh funktsii, Tomskii gosudarstvennyi universitet, Tomsk, 2001, 220 pp.
[2] Prudnikov A.P., Brychkov Yu.A., Marychev O.I., Integraly i ryady, Nauka, M., 1981, 800 pp.
[3] Satritdinova G.D., “Ob odnom sluchae integrirovaniya uravneniya Levnera s simmetriei vrascheniya”, Dokl. RAN, 368 (1999), 462–463 | MR | Zbl
[4] Aleksandrov I.A., Aleksandrov A.I., Kasatkina T.V., “Funktsional Milina i polinomy de Branzha”, Sb. nauchnykh trudov, Aktualnye problemy sovremennoi matematiki, 3, Izd-vo NII MIDO, Novosibirsk, 1997, 13–18