A formula of the summing for Chebyshevs’ polynomial and it’s application
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2009), pp. 5-13
Cet article a éte moissonné depuis la source Math-Net.Ru
The proof of formula of the summing for Chebyshevs’ polynomials of the second kind is given and it’s application to research of the Branges functions.
Keywords:
Branges functions, Chebyshevs’ polynoms of the second kind.
@article{VTGU_2009_2_a0,
author = {I. A. Aleksandrov and G. A. Yuferova},
title = {A~formula of the summing for {Chebyshevs{\textquoteright}} polynomial and it{\textquoteright}s application},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {5--13},
year = {2009},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2009_2_a0/}
}
TY - JOUR AU - I. A. Aleksandrov AU - G. A. Yuferova TI - A formula of the summing for Chebyshevs’ polynomial and it’s application JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2009 SP - 5 EP - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/VTGU_2009_2_a0/ LA - ru ID - VTGU_2009_2_a0 ER -
%0 Journal Article %A I. A. Aleksandrov %A G. A. Yuferova %T A formula of the summing for Chebyshevs’ polynomial and it’s application %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2009 %P 5-13 %N 2 %U http://geodesic.mathdoc.fr/item/VTGU_2009_2_a0/ %G ru %F VTGU_2009_2_a0
I. A. Aleksandrov; G. A. Yuferova. A formula of the summing for Chebyshevs’ polynomial and it’s application. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2009), pp. 5-13. http://geodesic.mathdoc.fr/item/VTGU_2009_2_a0/
[1] Aleksandrov I.A., Metody geometricheskoi teorii analiticheskikh funktsii, Tomskii gosuniversitet, Tomsk, 2001, 220 pp.
[2] Aleksandrov I.A., Yuferova G.A., “K dokazatelstvu neravenstva Biberbakha”, Vestnik TGU, 2007, no. 297, aprel, 141–145
[3] Gradshtein I.S., Ryzhik I.M., Tablitsy integralov summ, ryadov i proizvedenii, Izd-vo fiziko-matematicheskoi literatury, M., 1951, 446 pp. | MR
[4] Wolfram Koef, Dieter Schmersau Weinstain's functions and the Askey – Gasper identity, , Data obrascheniya 28.02.96 http://www.opus.kobv.de/zib/volltexte/1996/217/ps/SC-96-06.ps
[5] Uitteker E.T., Vatson G.N., Kurs sovremennogo analiza, ch. 2, GTTI, M.–L., 1934