The condition of joint deformation in the multicomponent mixture under shock wave compaction
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2009), pp. 54-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Behavior of the porous mixture placed in a cylindrical ampoule under conditions of shock wave loading is numerically investigated on the basis of multicomponent medium model. As a condition of joint deformation, an equality of pressures in components of the mixture is chosen. Optimum parameters for obtaining the maximal density of final products are determined.
Mots-clés : compaction
Keywords: multicomponent medium, numerical simulation.
@article{VTGU_2009_1_a7,
     author = {O. V. Ivanova and S. A. Zelepugin},
     title = {The condition of joint deformation in the multicomponent mixture under shock wave compaction},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {54--61},
     year = {2009},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2009_1_a7/}
}
TY  - JOUR
AU  - O. V. Ivanova
AU  - S. A. Zelepugin
TI  - The condition of joint deformation in the multicomponent mixture under shock wave compaction
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2009
SP  - 54
EP  - 61
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2009_1_a7/
LA  - ru
ID  - VTGU_2009_1_a7
ER  - 
%0 Journal Article
%A O. V. Ivanova
%A S. A. Zelepugin
%T The condition of joint deformation in the multicomponent mixture under shock wave compaction
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2009
%P 54-61
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2009_1_a7/
%G ru
%F VTGU_2009_1_a7
O. V. Ivanova; S. A. Zelepugin. The condition of joint deformation in the multicomponent mixture under shock wave compaction. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2009), pp. 54-61. http://geodesic.mathdoc.fr/item/VTGU_2009_1_a7/

[1] Nigmatulin R.I., Dinamika mnogofaznykh sred, ch. 1, Nauka, M., 1987, 464 pp.

[2] Fizika vzryva, ed. L.P. Orlenko, Fizmatlit, M., 2002, 1488 pp.

[3] Zelepugin S.A., Nikulichev V.B., Ivanova O.V., “Modelirovanie tverdofaznykh khimicheskikh prevraschenii v poristykh smesyakh pri udarno-volnovom nagruzhenii”, Gorenie i plazmo-khimiya, 3:3 (2005), 235–245

[4] Ivanova O.V., Zelepugin S.A., “Mnogokomponetnaya model sredy dlya chislennogo modelirovaniya udarno-volnovogo vozdeistviya na reagiruyuschie poristye smesi”, Izv. vuzov. Fizika, 2008, no. 9, 141–150 | MR

[5] Gust W.H., “High impact deformation of metal cylinders at elevated temperatures”, J. Appl. Phys., 53:5 (1982), 3566–3575 | DOI

[6] Miller G.H., Puckett E.G., “A high-order Godunov Method for multiple condensed phases”, J. Comp. Phys., 128:200 (1996), 134–164 | DOI | Zbl

[7] Pryummer R., Obrabotka poroshkovykh materialov vzryvom, Mir, M., 1990, 128 pp.