On a family of univalent functions
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2009), pp. 47-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new example integration of the Lovner’s equation with controlling function which depends on a parameter (argument) is received. It is shown that exist a function in the set of getting maps. It gives extremely function in the problem of estimate of argument of derivative for univalent conformal maps.
Keywords: Lovner’s equation, external functions to estimate of argument of derivative.
@article{VTGU_2009_1_a6,
     author = {G. A. Yuferova},
     title = {On a~family of univalent functions},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {47--53},
     year = {2009},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2009_1_a6/}
}
TY  - JOUR
AU  - G. A. Yuferova
TI  - On a family of univalent functions
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2009
SP  - 47
EP  - 53
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2009_1_a6/
LA  - ru
ID  - VTGU_2009_1_a6
ER  - 
%0 Journal Article
%A G. A. Yuferova
%T On a family of univalent functions
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2009
%P 47-53
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2009_1_a6/
%G ru
%F VTGU_2009_1_a6
G. A. Yuferova. On a family of univalent functions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2009), pp. 47-53. http://geodesic.mathdoc.fr/item/VTGU_2009_1_a6/

[1] Aleksandrov I.A., Parametricheskoe prodolzhenie v teorii odnolistnykh funktsii, Nauka, M., 1976 | MR

[2] Aleksandrov I.A., Metody geometricheskoi teorii analiticheskikh funktsii, Izd-vo Tom. un-ta, Tomsk, 2001

[3] Goluzin G.M., “O teoremakh iskazheniya v teorii konformnykh otobrazhenii”, Matematicheskii sbornik, 1:1 (1936), 127–135 | Zbl

[4] Bazilevich I.E., “Sur les théorèmes de Koebe–Bieberbach”, Matematicheskii sbornik, 1:3 (1936), 283–292 | Zbl