A criterion of an infinitely narrow field
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2009), pp. 27-30
Cet article a éte moissonné depuis la source Math-Net.Ru
In the article an example of the field, which admits linear and two-dimensional ordering, but it is not infinitely narrow field is consided. A criterion of an infinitely narrow field is formulated and proved.
Keywords:
Linearly ordered fields, a positive cone, two-ordered fields.
@article{VTGU_2009_1_a3,
author = {E. A. Fomina},
title = {A~criterion of an infinitely narrow field},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {27--30},
year = {2009},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2009_1_a3/}
}
E. A. Fomina. A criterion of an infinitely narrow field. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2009), pp. 27-30. http://geodesic.mathdoc.fr/item/VTGU_2009_1_a3/
[1] Pestov G.G., Dvumerno uporyadochennye polya, Tomsk, 2003
[2] Pestov G.G., Fomina E.A., “Konstruktsiya beskonechno uzkogo dvumerno uporyadochennogo polya”, Vestnik TGU. Matematika i mekhanika, 2007, no. 1, 50–53