The Navier solution for partly loaded rectangular plate
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2009), pp. 82-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Navier solution for deflection function in the problem of bending of a rectangular simply supported plate is studied. The plate is supposed to be loaded by a uniform pressure distributed on the rectangle with the sides, parallel to the sides of the plate. The author brings and uses his universal method, which belongs to the classical theory of functions. It is proved that: a) all the derivatives of the Navier solution of biharmonic operator are continuous functions in set $E$, which coincides with subtraction from closed rectangle $G$ of the plate the lines passing through the sides of the rectangle of the load application b) In $E$ these derivatives can be calculated by differentiating the Navier series term by term under both symbols of summing. The cutting forces in repeated series of accelerated convergence are given.
Keywords: rectangular plate, substantiation, acceleration of convergence.
Mots-clés : solution
@article{VTGU_2009_1_a10,
     author = {S. P. Seyranian},
     title = {The {Navier~solution} for partly loaded rectangular plate},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {82--95},
     year = {2009},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2009_1_a10/}
}
TY  - JOUR
AU  - S. P. Seyranian
TI  - The Navier solution for partly loaded rectangular plate
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2009
SP  - 82
EP  - 95
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2009_1_a10/
LA  - ru
ID  - VTGU_2009_1_a10
ER  - 
%0 Journal Article
%A S. P. Seyranian
%T The Navier solution for partly loaded rectangular plate
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2009
%P 82-95
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2009_1_a10/
%G ru
%F VTGU_2009_1_a10
S. P. Seyranian. The Navier solution for partly loaded rectangular plate. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2009), pp. 82-95. http://geodesic.mathdoc.fr/item/VTGU_2009_1_a10/

[1] Timoshenko S.P., Voinovskii-Kriger S., Plastinki i obolochki, Per. s angl., Fizmatgiz, M., 1963, 635 pp.

[2] Seiranyan S.P., “Ob obosnovanii odnogo resheniya Nave”, Aktualnye problemy mekhaniki sploshnoi sredy, Trudy Mezhdunarodnoi konferentsii, posvyaschennoi 95-letiyu akad. NAN RA N.Kh. Arutyunyana (g. Tsakhkadzor (Armeniya), 25–28 sentyabrya, 2007), 2007, 391–395

[3] Lukasevich S., Lokalnye nagruzki v plastinakh i obolochkakh, Per. s angl. i polsk., Mir, M., 1982, 542 pp.

[4] Seiranyan S.P., “K resheniyu V.Z. Vlasova zadachi izgiba pryamougolnykh v plane momentnykh pologikh obolochek poperechnoi siloi”, Kompozitsionnye materialy i optimalnoe proektirovanie, Tez. dokl. Mezhdunarodnoi konferentsii (g. Agavnadzor, 25–28 sentyabrya), Gitutyun, Erevan, 2006, 56–57

[5] Seiranyan S.P., “K zadache ob izgibe pryamougolnoi plastiny poperechnoi siloi”, Problemy dinamiki vzaimodeistviya deformiruemykh sred, V Mezhdunarodnaya konferentsiya (g. Goris, 1–5 oktyabrya), Gitutyun, Erevan, 2005, 314–318

[6] Seiranyan S.P., “Ob uskorenii skhodimosti v zadache ob izgibe pryamougolnoi plastiny poperechnoi siloi”, Izbrannye voprosy teorii uprugosti, plastichnosti i polzuchesti, Sb. statei, posvyaschennyi 75-letiyu akad. NAN RA M.A. Zadoyana, Gitutyun, Erevan, 2006, 266–273

[7] Bekkenbakh E., Bellman R., Vvedenie v neravenstva, Mir, M., 1965, 165 pp. | MR

[8] Salem R., Essair sur les séries trigonométriques, Actual. Sci. Industr., 862, Paris, 1940 | Zbl

[9] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. 3, Nauka, M., 1970, 656 pp.

[10] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Fizmatgiz, M., 1959, 807 pp. | Zbl

[11] Dadu A., “Une méthode d'accérlération de la convergence des séries trigonométriques”, Mathematica – Revue d'Analyse Numérique et de Théorie de l'Approximation, 9:1 (1980), 27–33 | MR | Zbl

[12] James E. Kiefer, George H. Weiss, “A comparison of two methods for accelerating the convergence of Fourier series”, Comput. Math. Appls., 7:6 (1981), 527–535 | DOI | MR | Zbl