Non-Holonomik Hyperplane in the Four-Dimensional Euclidean Space
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2008), pp. 10-21
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a non-holonomic distribution of a particular form, the socalled non-holonomic hiperplane, and the vector field of its normal vectors $E_4$. There exists only one non-holonomic plane in $E_4$. It has no singular points. The equation of the non-holonomic hiperplane is obtained in a stationary coordinate system. We also study holonomic distributions that are invariantly connected with the non-holonomic hiperplane.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
nonholonomic geometry, vector field.
                    
                  
                
                
                @article{VTGU_2008_3_a1,
     author = {N. M. Onishchuk},
     title = {Non-Holonomik {Hyperplane} in the {Four-Dimensional} {Euclidean} {Space}},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {10--21},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2008_3_a1/}
}
                      
                      
                    TY - JOUR AU - N. M. Onishchuk TI - Non-Holonomik Hyperplane in the Four-Dimensional Euclidean Space JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2008 SP - 10 EP - 21 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2008_3_a1/ LA - ru ID - VTGU_2008_3_a1 ER -
N. M. Onishchuk. Non-Holonomik Hyperplane in the Four-Dimensional Euclidean Space. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2008), pp. 10-21. http://geodesic.mathdoc.fr/item/VTGU_2008_3_a1/
