The Lindel\"of number is $fu$-invariant
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2008), pp. 10-19

Voir la notice de l'article provenant de la source Math-Net.Ru

Two Tychonoff spaces $X$ and $Y$ are said to be $l$-equivalent ($u$-equivalent) if $C_p(X)$ and $C_p(Y)$ are linearly (uniformly) homeomorphic. N. V. Velichko proved that the Lindelöf property is preserved by the relation of $l$-equivalence. A. Bouziad strengthened this result and proved that the Lindelöf number is preserved by the relation of $l$-equivalence. In this paper the concept of the support different variants of which can be founded in the papers of S.P. Gul'ko and O.G. Okunev is introduced. Using this concept we introduce an equivalence relation on the class of topological spaces. Two Tychonoff spaces $X$ and $Y$ are said to be $fu$-equivalent if there exists an uniform homeomorphism $h: C_p(Y)\to C_p(X)$ such that $\operatorname{supp}^h x$ and $\operatorname{supp}^{h^{-1}}x$ are finite sets for all $x\in X$ and $y\in Y$. This is an intermediate relation between relations of $u$- and $l$-equivalence. In this paper it has been proved that the Lindelöf number is preserved by the relation of $fu$-equivalence.
Keywords: u-equivalence; Lindelöf number; Function spaces; Set-valued mappings.
@article{VTGU_2008_2_a1,
     author = {A. V. Arbit},
     title = {The {Lindel\"of} number is $fu$-invariant},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {10--19},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2008_2_a1/}
}
TY  - JOUR
AU  - A. V. Arbit
TI  - The Lindel\"of number is $fu$-invariant
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2008
SP  - 10
EP  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2008_2_a1/
LA  - en
ID  - VTGU_2008_2_a1
ER  - 
%0 Journal Article
%A A. V. Arbit
%T The Lindel\"of number is $fu$-invariant
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2008
%P 10-19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2008_2_a1/
%G en
%F VTGU_2008_2_a1
A. V. Arbit. The Lindel\"of number is $fu$-invariant. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2008), pp. 10-19. http://geodesic.mathdoc.fr/item/VTGU_2008_2_a1/