On the geometry of $n$-ordered groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2007), pp. 46-49

Voir la notice de l'article provenant de la source Math-Net.Ru

Bases of a linear finite-dimensional space are described which could be built from the elements of two disjoint bases. A countable set of 4-dimensional ordered groups is constructed.
@article{VTGU_2007_1_a5,
     author = {G. G. Pestov and A. A. Tobolkin},
     title = {On the geometry of $n$-ordered groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {46--49},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2007_1_a5/}
}
TY  - JOUR
AU  - G. G. Pestov
AU  - A. A. Tobolkin
TI  - On the geometry of $n$-ordered groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2007
SP  - 46
EP  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2007_1_a5/
LA  - ru
ID  - VTGU_2007_1_a5
ER  - 
%0 Journal Article
%A G. G. Pestov
%A A. A. Tobolkin
%T On the geometry of $n$-ordered groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2007
%P 46-49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2007_1_a5/
%G ru
%F VTGU_2007_1_a5
G. G. Pestov; A. A. Tobolkin. On the geometry of $n$-ordered groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2007), pp. 46-49. http://geodesic.mathdoc.fr/item/VTGU_2007_1_a5/