Maximum principle for difference of almost solutions of elliptic equations
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2007), pp. 33-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analog of the maximum principle is proved for differences of almost solutions of $p$-harmonic equations, the minimal surface equation and the gas dynamics equation.
@article{VTGU_2007_1_a4,
     author = {V. M. Miklyukov},
     title = {Maximum principle for difference of almost solutions of elliptic equations},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {33--45},
     year = {2007},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2007_1_a4/}
}
TY  - JOUR
AU  - V. M. Miklyukov
TI  - Maximum principle for difference of almost solutions of elliptic equations
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2007
SP  - 33
EP  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2007_1_a4/
LA  - ru
ID  - VTGU_2007_1_a4
ER  - 
%0 Journal Article
%A V. M. Miklyukov
%T Maximum principle for difference of almost solutions of elliptic equations
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2007
%P 33-45
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2007_1_a4/
%G ru
%F VTGU_2007_1_a4
V. M. Miklyukov. Maximum principle for difference of almost solutions of elliptic equations. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2007), pp. 33-45. http://geodesic.mathdoc.fr/item/VTGU_2007_1_a4/

[1] Heinonen J., Kilpeläinen T., Martio O., Nonlinear potential theory of degenerate elliptic equations, Clarendon Press, Oxford etc., 1993, 363 pp. | MR | Zbl

[2] Miklyukov V.M., “$A$-resheniya s osobennostyami kak pochti-resheniya”, Matem. sb., 197:11 (2006), 31–50 | DOI | MR | Zbl

[3] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1969, 760 pp. | MR

[4] Miklyukov V.M., Vvedenie v negladkii analiz, Izd-vo VolGU, Volgograd, 2006, 284 pp.

[5] Miklyukov V.M., Vuorinen M.K., “A generalized maximum principle for the differences of pharmonic functions on Riemannian manifolds”, Trudy po analizu i geometrii, Izd-vo In-ta matematiki, Novosibirsk, 2000, 401–413 | MR | Zbl

[6] Miklyukov V.M., Rasila A., Vuorinen M.K., “Three spheres theorem for $p$-harmonic functions”, Houston J. Math., 33:4 (2007), 1215–1230 | MR | Zbl

[7] Byström J., “Sharp constants for some inequalities connected to the $p$-Laplace operator”, J. Inequalities in Rure and Appl. Math., 6:2 (2005), 56, 8 pp. | MR | Zbl

[8] Miklyukov V.M., Geometricheskii analiz, Izd-vo VolGU, Volgograd, 2007, 532 pp.

[9] Miklyukov V.M., “Ob odnom novom podkhode k teorii Bernshteina i blizkim voprosam uravnenii tipa minimalnoi poverkhnosti”, Matem. sb., 108(150) (1979), 268–289 ; Научные школы Волгоградского государственного ун-та. Геометрический анализ и его приложения, Сб. статей, Изд-во ВолГУ, Волгоград, 1999, 22–51 | MR

[10] Hwang J.F., “Comparison principles and theorems for prescribed mean curvature equation in unbounded domains”, Ann. Scuola Norm. Sup. Pisa, 15 (1988), 341–355 | MR | Zbl

[11] Hwang J.F., “A uniqueness theorem for the minimal surface equation”, Pacific J. Math., 176 (1996), 357–364 | DOI | MR | Zbl

[12] Collin P., Krust R., “Le probléme de Dirichlet pour l'équation des surfaces minimales sur des domaines non bornés”, Bull. Soc. Math. France, 119 (1991), 443–462 | MR | Zbl

[13] Pigola S., Rigoli M., Setti A.G., “Some remarks on the prescribed mean curvature equation on complete manifolds”, Pacific J. Math., 206:1 (2002), 195–217 | DOI | MR | Zbl

[14] Bers L., Matematicheskie voprosy dozvukovoi i okolozvukovoi gazovoi dinamiki, IL, M., 1961, 208 pp. | MR

[15] Lavrentev M.A., Shabat B.V., Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1973, 416 pp. | MR

[16] Klyachin V.A., Kochetov A.V., Miklyukov V.M., Some elementary inequalities in gas dynamics equation, Reports of the Department of Mathematics, University of Helsinki, Preprint 402, 2004, 26 pp.; J. Inequal. and Appl., 2006, Article ID 21693, 29 pp. | MR | Zbl

[17] Kochetov A.V., Miklyukov V.M., “«Slabaya» teorema tipa Fragmena – Lindelefa dlya raznosti reshenii uravneniya gazovoi dinamiki”, Sibirsk. zhurn. industrialnoi matematiki, IX:3 (2006), 90–101 | MR