On polynomial homeomorphisms of spaces of continuous functions
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2007), pp. 28-32
Cet article a éte moissonné depuis la source Math-Net.Ru
The notions of polynomial homeomorphism of spaces of continuous functions and of $p$-equivalence of topological spaces are introduced. It is shown, that $p$-equivalence preserves topological dimension inside the class of spaces with countable base.
@article{VTGU_2007_1_a3,
author = {V. R. Lazarev},
title = {On polynomial homeomorphisms of spaces of continuous functions},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {28--32},
year = {2007},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2007_1_a3/}
}
V. R. Lazarev. On polynomial homeomorphisms of spaces of continuous functions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2007), pp. 28-32. http://geodesic.mathdoc.fr/item/VTGU_2007_1_a3/
[1] Arkhangelskii A.V., Topologicheskie prostranstva funktsii, Izd-vo MGU, M., 1989
[2] Lazarev V.R., “Odin primer vsyudu plotnogo mnozhestva mnogochlenov v $C_pC_p(X)$”, Mezhdunar. konf. po matematike i mekhanike, Izbr. dokl., Tomsk, 2003, 55–59
[3] Gulko S.P., “O ravnomernykh gomeomorfizmakh prostranstv nepreryvnykh funktsii”, Trudy Matem. inst. Steklova, 193, 1992, 82–88 | MR | Zbl