On polynomial homeomorphisms of spaces of continuous functions
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2007), pp. 28-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The notions of polynomial homeomorphism of spaces of continuous functions and of $p$-equivalence of topological spaces are introduced. It is shown, that $p$-equivalence preserves topological dimension inside the class of spaces with countable base.
@article{VTGU_2007_1_a3,
     author = {V. R. Lazarev},
     title = {On polynomial homeomorphisms of spaces of continuous functions},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {28--32},
     year = {2007},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2007_1_a3/}
}
TY  - JOUR
AU  - V. R. Lazarev
TI  - On polynomial homeomorphisms of spaces of continuous functions
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2007
SP  - 28
EP  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VTGU_2007_1_a3/
LA  - ru
ID  - VTGU_2007_1_a3
ER  - 
%0 Journal Article
%A V. R. Lazarev
%T On polynomial homeomorphisms of spaces of continuous functions
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2007
%P 28-32
%N 1
%U http://geodesic.mathdoc.fr/item/VTGU_2007_1_a3/
%G ru
%F VTGU_2007_1_a3
V. R. Lazarev. On polynomial homeomorphisms of spaces of continuous functions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2007), pp. 28-32. http://geodesic.mathdoc.fr/item/VTGU_2007_1_a3/

[1] Arkhangelskii A.V., Topologicheskie prostranstva funktsii, Izd-vo MGU, M., 1989

[2] Lazarev V.R., “Odin primer vsyudu plotnogo mnozhestva mnogochlenov v $C_pC_p(X)$”, Mezhdunar. konf. po matematike i mekhanike, Izbr. dokl., Tomsk, 2003, 55–59

[3] Gulko S.P., “O ravnomernykh gomeomorfizmakh prostranstv nepreryvnykh funktsii”, Trudy Matem. inst. Steklova, 193, 1992, 82–88 | MR | Zbl