@article{VTGU_2007_1_a2,
author = {P. A. Krylov},
title = {The radicals of endomorphism rings of {Abelian} groups},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {17--27},
year = {2007},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2007_1_a2/}
}
P. A. Krylov. The radicals of endomorphism rings of Abelian groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 1 (2007), pp. 17-27. http://geodesic.mathdoc.fr/item/VTGU_2007_1_a2/
[1] Pierce R.S., “Homomorphisms of primary abelian groups”, Topics in Abelian groups, Chicago, 1963, 215–310 | MR
[2] Mikhalev A.V., “Koltsa endomorfizmov modulei i struktury podmodulei”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 12, 1974, 51–76 | Zbl
[3] Markov V.T., Mikhalev A.V., Skornyakov L.A., Tuganbaev A.A., “Koltsa endomorfizmov modulei i struktury podmodulei”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya, 21, 1983, 183–254 | Zbl
[4] Dugas M., “On the Jacobson radical of some endomorphism rings”, Proc. Amer. Math. Soc., 102:4 (1988), 823–826 | DOI | MR | Zbl
[5] Praeger C.E., Schultz P., “The Loewy length of the Jacobson radical of a bounded endomorphism ring”, Contem. Math., 130 (1992), 349–360 | DOI | MR | Zbl
[6] Hausen J., Praeger C.E., Schultz P., “Most abelian p-groups are determined by the Jacobson radical of their endomorphism rings”, Math. Z., 216:3 (1994), 431–436 | DOI | MR | Zbl
[7] Hausen J., Johnson J.A., “Determining abelian p-groups by the Jacobson radical of their endomorphism rings”, J. Algebra, 174:1 (1995), 217–224 | DOI | MR | Zbl
[8] Krylov P.A., “Radikaly kolets endomorfizmov abelevykh grupp bez krucheniya”, Matem. sb., 95:2 (1974), 214–228 | MR | Zbl
[9] Krylov P.A., “Radikal Dzhekobsona koltsa endomorfizmov abelevoi gruppy bez krucheniya”, Abelevy gruppy i moduli, 1994, no. 11, 12, 99–120
[10] Krylov P.A., “Summy avtomorfizmov abelevykh grupp i radikal Dzhekobsona koltsa endomorfizmov”, Izv. vuzov. Matematika, 1976, no. 4, 56–66 | MR | Zbl
[11] Mader A., Schultz P., “Endomorphism rings and automorphism groups of almost completely decomposable groups”, Comm. Algebra, 28:1 (2000), 51–68 | DOI | MR | Zbl
[12] Fuks L., Beskonechnye abelevy gruppy, v. 2, M., Mir
[13] Krylov P.A., “Vpolne tranzitivnye abelevy gruppy bez krucheniya”, Algebra i logika, 29:5 (1990), 549–560 | MR | Zbl
[14] Glaz S., Wickless W., “Regular and principal projective endomorphism rings of mixed abelian groups”, Comm. Algebra, 22 (1994), 1161–1176 | DOI | MR | Zbl
[15] Albrecht U.F., Goeters H.P., Wickless W., “The flat dimension of mixed abelian groups as Emodules”, Rocky Mountain J. Math., 25 (1995), 569–590 | DOI | MR | Zbl
[16] Albrecht U., “Mixed abelian groups with artinian quasi-endomorphism ring”, Comm. Algebra, 25 (1997), 3497–3511 | DOI | MR | Zbl
[17] Fomin A., Wickless W., “Self-small mixed abelian groups G with G/T(G) finite rank divisible”, Comm. Algebra, 26 (1998), 3563–3580 | DOI | MR | Zbl
[18] Krylov P.A., “Smeshannye abelevy gruppy kak moduli nad svoimi koltsami endomorfizmov”, Fund. i prikl. matematika, 6:3 (2000), 793–812 | MR | Zbl
[19] Krylov P.A., Pakhomova E.G., Podberezina E.I., “Ob odnom klasse smeshannykh abelevykh grupp”, Vestnik TGU, 2000, no. 269, 29–34
[20] Krylov P.A., Pakhomova E.G., “Abelevy gruppy i regulyarnye moduli”, Matem. zametki, 69:3 (2001), 402–411 | DOI | MR | Zbl
[21] Arnold D.M., Murley C.E., “Abelian groups A, such that Hom(A,-) preserves direct sums of copies of A”, Pacific J. Math., 56:1 (1975), 7–20 | DOI | MR | Zbl