@article{VTAMU_2024_29_148_a7,
author = {J. Ettayb},
title = {On $\lambda$-commuting and left (right) pseudospectrum and left~(right) condition pseudospectrum of continuous linear operators on~ultrametric {Banach} spaces},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {494--516},
year = {2024},
volume = {29},
number = {148},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a7/}
}
TY - JOUR AU - J. Ettayb TI - On $\lambda$-commuting and left (right) pseudospectrum and left (right) condition pseudospectrum of continuous linear operators on ultrametric Banach spaces JO - Vestnik rossijskih universitetov. Matematika PY - 2024 SP - 494 EP - 516 VL - 29 IS - 148 UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a7/ LA - en ID - VTAMU_2024_29_148_a7 ER -
%0 Journal Article %A J. Ettayb %T On $\lambda$-commuting and left (right) pseudospectrum and left (right) condition pseudospectrum of continuous linear operators on ultrametric Banach spaces %J Vestnik rossijskih universitetov. Matematika %D 2024 %P 494-516 %V 29 %N 148 %U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a7/ %G en %F VTAMU_2024_29_148_a7
J. Ettayb. On $\lambda$-commuting and left (right) pseudospectrum and left (right) condition pseudospectrum of continuous linear operators on ultrametric Banach spaces. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 494-516. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a7/
[1] H. Weyl, “Quantenmechanik und gruppentheorie”, Z. Physik, 46 (1927), 1–46 | DOI | MR
[2] J. von Neumann, “Die eindeutigkeit der Schrödingerschen operatoren”, Mathematische Annalen, 104 (1931), 570–587 | DOI | MR
[3] P. Busch, P. J. Lahti, P. Mittlestaedt, The Quantum Theory of Measurement, Springer–Verlag, Berlin, 1996 | MR | Zbl
[4] E. B. Davies, Quantum Theory of Open Systems, Academic Press, London–New York, 1976 | MR | Zbl
[5] S. Gudder, G. Nagy, “Sequential quantum measurements”, Journal of Mathematical Physics, 42:11 (2001), 5212–5222 | DOI | MR | Zbl
[6] C. R. Putnam, Commutation Properties of Hilbert Space Operators and Related Topics, Springer–Verlag, New York, 1967 | MR
[7] M. Cho, B. P. Duggal, R. Harte, S. Ôta, “Operator equation $AB=\lambda BA$”, International Math. Forum, 5:53–56 (2010), 2629–2637 | MR | Zbl
[8] C. Cowen, “Commutants and the operator equation $AX=\lambda XA$”, Pacific J. Math., 80:2 (1979), 337–340 | DOI | MR | Zbl
[9] J. Yang, H. K. Du, “A note on commutativity up to a factor of bounded operators”, Proc. Amer. Math. Soc., 132:6 (2004), 1713–1720 | DOI | MR | Zbl
[10] J. Ettayb, “$\lambda$-commuting of bounded linear operators on ultrametric Banach spaces and determinant spectrum of ultrametric matrices”, Topological Algebra and its Applications, 11 (2023), Article number: 20230103 | MR
[11] A. Ammar, A. Bouchekoua, A. Jeribi, “Pseudospectra in a non-Archimedean Banach space and essential pseudospectra in $E_{\omega}$”, Filomat, 33:12 (2019), 3961–3976 | DOI | MR | Zbl
[12] A. Ammar, A. Bouchekoua, N. Lazrag, “The condition $\varepsilon$-pseudospectra on non-Archimedean Banach space”, Boletín de la Sociedad Matemática Mexicana, 28:2 (2022), 1–24 | MR
[13] J. Ettayb, “Pseudo-spectrum of non-Archimedean matrix pencils”, Bull. Transilv. Univ. Braşov. Series III: Mathematics and Computer Science, 4(66):1 (2024), 73–86 | MR
[14] J. Ettayb, “Ultrametric Fredholm operators and approximate pseudospectrum”, Arab Journal of Mathematical Sciences, 2024 (to appear)
[15] J. Ettayb, “$(N,\varepsilon)$-pseudospectra of bounded linear operators on ultrametric Banach spaces”, Gulf Journal of Mathematics, 17:1 (2024), 12–28 | DOI | MR | Zbl
[16] J. Ettayb, “Common properties of the operator equations in ultrametric specrtal theory”, Gulf Journal of Mathematics, 16:1 (2024), 79–95 | DOI | MR | Zbl
[17] J. Ettayb, “Condition pseudospectrum of operator pencils on non-archimedean Banach spaces”, 2023, arXiv: abs/2305.18401 | MR
[18] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press Assessment, Cambridge, 1991 | MR | Zbl
[19] K. G. Krishna, “Determinant spectrum: A generalization of eigenvalues”, Funct. Anal. Approx. Comput., 10:2 (2018), 1–12 | MR | Zbl
[20] T. Diagana, F. Ramaroson, Non-Archimedean Operators Theory, Springer, Cham, 2016 | MR
[21] A. C. M. van Rooij, Non-Archimedean Functional Analysis, Monographs and Textbooks in Pure and Applied Math., 51, Marcel Dekker, Inc., New York, 1978 | MR | Zbl
[22] J. Ettayb, “Some results on non-Archimedean operators theory”, Sahand Communications in Mathematical Analysis, 20:4 (2023), 139–154 | Zbl
[23] M. Vishik, “Non-Archimedean spectral theory”, J. Sov. Math., 30 (1985), 2513–2554 | DOI | MR