On $\lambda$-commuting and left (right) pseudospectrum and left~(right) condition pseudospectrum of continuous linear operators on~ultrametric Banach spaces
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 494-516
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we demonstrate some spectral properties of the $\lambda$-commuting of continuous linear operators on ultrametric Banach spaces and we introduce and study the operator equations $ASB=S$ and $AS=SB.$ We give some properties of these operator equations. Some illustrative examples are provided. On the other hand, we introduce and study the left (right) pseudospectrum and the left (right) condition pseudospectrum of continuous linear operators on ultrametric Banach spaces. We prove that the left pseudospectra associated with various $\varepsilon>0$ are nested sets and the intersection of all the left pseudospectra is the left spectrum. We give a relationship between the left (right) pseudospectrum and the left (right) condition pseudospectrum. Moreover, many results are proved concerning the left (right) pseudospectrum and the left (right) condition pseudospectrum of continuous linear operators on ultrametric Banach spaces.
Keywords:
ultrametric Banach spaces, bounded linear operators, spectrum, left and right pseudospectrum
@article{VTAMU_2024_29_148_a7,
author = {J. Ettayb},
title = {On $\lambda$-commuting and left (right) pseudospectrum and left~(right) condition pseudospectrum of continuous linear operators on~ultrametric {Banach} spaces},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {494--516},
publisher = {mathdoc},
volume = {29},
number = {148},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a7/}
}
TY - JOUR AU - J. Ettayb TI - On $\lambda$-commuting and left (right) pseudospectrum and left~(right) condition pseudospectrum of continuous linear operators on~ultrametric Banach spaces JO - Vestnik rossijskih universitetov. Matematika PY - 2024 SP - 494 EP - 516 VL - 29 IS - 148 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a7/ LA - en ID - VTAMU_2024_29_148_a7 ER -
%0 Journal Article %A J. Ettayb %T On $\lambda$-commuting and left (right) pseudospectrum and left~(right) condition pseudospectrum of continuous linear operators on~ultrametric Banach spaces %J Vestnik rossijskih universitetov. Matematika %D 2024 %P 494-516 %V 29 %N 148 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a7/ %G en %F VTAMU_2024_29_148_a7
J. Ettayb. On $\lambda$-commuting and left (right) pseudospectrum and left~(right) condition pseudospectrum of continuous linear operators on~ultrametric Banach spaces. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 494-516. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a7/