$\rho-F$-contraction fixed point theorem
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 485-493 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the question of conditions for the existence and uniqueness of a fixed point of a mapping over a complete metric space. We first discuss the concepts of $F$-contraction and $F^*$-contraction in fixed point theory. These concepts, developed respectively by Wardowski and Piri with Kumam, have catalyzed significant research in various metric spaces. We then propose a generalization of these concepts, $\rho-F$-contraction and $\rho-F^*$-contraction, and demonstrate its effectiveness in ensuring the existence and uniqueness of fixed points. This new approach provides greater flexibility by including a function $\rho$ that modulates the contraction, extending the applicability of $F$- and $F^*$-contractions. We conclude the paper with an example of a mapping that is a $\rho-F$-contraction and a $\rho-F^*$-contraction, respectively, and has a unique fixed point. However, this mapping does not satisfy the conditions of Wardowski and the conditions of Piri and Kumam.
Keywords: fixed-point, uniqueness, $F$-contraction, $\rho-F$-contraction
Mots-clés : existence
@article{VTAMU_2024_29_148_a6,
     author = {R. Chakar and S. Dehilis and W. Merchela and H. Guebbai},
     title = {$\rho-F$-contraction fixed point theorem},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {485--493},
     year = {2024},
     volume = {29},
     number = {148},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a6/}
}
TY  - JOUR
AU  - R. Chakar
AU  - S. Dehilis
AU  - W. Merchela
AU  - H. Guebbai
TI  - $\rho-F$-contraction fixed point theorem
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2024
SP  - 485
EP  - 493
VL  - 29
IS  - 148
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a6/
LA  - en
ID  - VTAMU_2024_29_148_a6
ER  - 
%0 Journal Article
%A R. Chakar
%A S. Dehilis
%A W. Merchela
%A H. Guebbai
%T $\rho-F$-contraction fixed point theorem
%J Vestnik rossijskih universitetov. Matematika
%D 2024
%P 485-493
%V 29
%N 148
%U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a6/
%G en
%F VTAMU_2024_29_148_a6
R. Chakar; S. Dehilis; W. Merchela; H. Guebbai. $\rho-F$-contraction fixed point theorem. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 485-493. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a6/

[1] N. Secelean, D. Wardowski, “New fixed point tools in non-metrizable spaces”, Results in Mathematics, 72:3 (2017), 919–935 | DOI | MR | Zbl

[2] D. Wardowski, “Fixed points of a new type of contractive mappings in complete metric spaces”, Fixed Point Theory and Applications, 94 (2012), Article number: 94(2012) | MR

[3] H. Piri, P. Kumam, “Some fixed point theorems concerning $F$-contraction in complete metric spaces”, FFixed Point Theory and Applications, 210 (2014), Article number: 210(2014) | MR

[4] E. Karapinar, M. A. Kutbi, H. Piri, D. O’Regan, “Fixed points of conditionally $F$-contractions in complete metric-like spaces”, Fixed Point Theory and Applications, 126 (2015), Article number: 126(2015) | MR

[5] J. Z. Vujakovi, S. N. Radenović, “On some $F$-contraction of Piri–Kumam–Dung-type mappings in metric spaces”, Military Technical Courier, 68:4 (2020), 697–714

[6] S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales”, Fundamenta Mathematicae, 3:1 (1922), 133–181 | DOI | MR

[7] M. A. Alghamdi, N. Hussain, P. Salimi, “Fixed point and coupled fixed point theorems on $b$-metric-like spaces”, Journal of Inequalities and Applications, 2013:7 (2013), Article number: 402, 2591–2601 | MR

[8] T. G. Bhaskar, V. Lakshmikantham, “Fixed point theorems in partially ordered metric spaces and applications”, Nonlinear Analysis: Theory, Methods Applications, 65:7 (2006), 1379-1393 | DOI | MR | Zbl

[9] D. Turkoglu, C. Alaca, Y. J. Cho, C. Yildiz, “Common fixed point theorems in intuitionistic fuzzy metric spaces”, Journal of Applied Mathematics and Computing, 22:1–1 (2006), 411–424 | DOI | MR | Zbl

[10] I. Arandjelović, Z. Kadelburg, S. Radenović, “Boyd–Wong-type common fixed point results in cone metric spaces”, Applied Mathematics and Computation, 217:17 (2011), 7167–7171 | DOI | MR | Zbl

[11] A. Awais, M. Nazam, M. Arshad, S. O. Kim, “$F$-metric, $F$-contraction and common fixed-point theorems with applications”, Mathematics, 7:7 (2019), Article number: 586, 221–231

[12] J. Ahmad, J. Al-Rawashdeh, A. Azam, “New fixed point theorems for generalized $F$-contractions in complete metric spaces”, Fixed Point Theory and Algorithms for Sciences and Engineering, 80 (2015), 1–18 | MR

[13] M. Cvetković, “The relation between $F$-contraction and Meir–Keeler contraction”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117 (2023), Article number: 39

[14] E. S. Zhukovskiy, “The fixed points of contractions of $F$-quasimetric spaces”, Siberian Mathematical Journal, 59:6 (2018), 1338–1350 | DOI | MR | Zbl