$\rho-F$-contraction fixed point theorem
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 485-493

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the question of conditions for the existence and uniqueness of a fixed point of a mapping over a complete metric space. We first discuss the concepts of $F$-contraction and $F^*$-contraction in fixed point theory. These concepts, developed respectively by Wardowski and Piri with Kumam, have catalyzed significant research in various metric spaces. We then propose a generalization of these concepts, $\rho-F$-contraction and $\rho-F^*$-contraction, and demonstrate its effectiveness in ensuring the existence and uniqueness of fixed points. This new approach provides greater flexibility by including a function $\rho$ that modulates the contraction, extending the applicability of $F$- and $F^*$-contractions. We conclude the paper with an example of a mapping that is a $\rho-F$-contraction and a $\rho-F^*$-contraction, respectively, and has a unique fixed point. However, this mapping does not satisfy the conditions of Wardowski and the conditions of Piri and Kumam.
Keywords: fixed-point, uniqueness, $F$-contraction, $\rho-F$-contraction
Mots-clés : existence
@article{VTAMU_2024_29_148_a6,
     author = {R. Chakar and S. Dehilis and W. Merchela and H. Guebbai},
     title = {$\rho-F$-contraction fixed point theorem},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {485--493},
     publisher = {mathdoc},
     volume = {29},
     number = {148},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a6/}
}
TY  - JOUR
AU  - R. Chakar
AU  - S. Dehilis
AU  - W. Merchela
AU  - H. Guebbai
TI  - $\rho-F$-contraction fixed point theorem
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2024
SP  - 485
EP  - 493
VL  - 29
IS  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a6/
LA  - en
ID  - VTAMU_2024_29_148_a6
ER  - 
%0 Journal Article
%A R. Chakar
%A S. Dehilis
%A W. Merchela
%A H. Guebbai
%T $\rho-F$-contraction fixed point theorem
%J Vestnik rossijskih universitetov. Matematika
%D 2024
%P 485-493
%V 29
%N 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a6/
%G en
%F VTAMU_2024_29_148_a6
R. Chakar; S. Dehilis; W. Merchela; H. Guebbai. $\rho-F$-contraction fixed point theorem. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 485-493. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a6/