$\rho-F$-contraction fixed point theorem
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 485-493
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the question of conditions for the existence and uniqueness of a fixed point of a mapping over a complete metric space. We first discuss the concepts of $F$-contraction and $F^*$-contraction in fixed point theory. These concepts, developed respectively by Wardowski and Piri with Kumam, have catalyzed significant research in various metric spaces. We then propose a generalization of these concepts, $\rho-F$-contraction and $\rho-F^*$-contraction, and demonstrate its effectiveness in ensuring the existence and uniqueness of fixed points. This new approach provides greater flexibility by including a function $\rho$ that modulates the contraction, extending the applicability of $F$- and $F^*$-contractions. We conclude the paper with an example of a mapping that is a $\rho-F$-contraction and a $\rho-F^*$-contraction, respectively, and has a unique fixed point. However, this mapping does not satisfy the conditions of Wardowski and the conditions of Piri and Kumam.
Keywords:
fixed-point, uniqueness, $F$-contraction, $\rho-F$-contraction
Mots-clés : existence
Mots-clés : existence
@article{VTAMU_2024_29_148_a6,
author = {R. Chakar and S. Dehilis and W. Merchela and H. Guebbai},
title = {$\rho-F$-contraction fixed point theorem},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {485--493},
publisher = {mathdoc},
volume = {29},
number = {148},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a6/}
}
TY - JOUR AU - R. Chakar AU - S. Dehilis AU - W. Merchela AU - H. Guebbai TI - $\rho-F$-contraction fixed point theorem JO - Vestnik rossijskih universitetov. Matematika PY - 2024 SP - 485 EP - 493 VL - 29 IS - 148 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a6/ LA - en ID - VTAMU_2024_29_148_a6 ER -
R. Chakar; S. Dehilis; W. Merchela; H. Guebbai. $\rho-F$-contraction fixed point theorem. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 485-493. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a6/