Mots-clés : existence
@article{VTAMU_2024_29_148_a6,
author = {R. Chakar and S. Dehilis and W. Merchela and H. Guebbai},
title = {$\rho-F$-contraction fixed point theorem},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {485--493},
year = {2024},
volume = {29},
number = {148},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a6/}
}
TY - JOUR AU - R. Chakar AU - S. Dehilis AU - W. Merchela AU - H. Guebbai TI - $\rho-F$-contraction fixed point theorem JO - Vestnik rossijskih universitetov. Matematika PY - 2024 SP - 485 EP - 493 VL - 29 IS - 148 UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a6/ LA - en ID - VTAMU_2024_29_148_a6 ER -
R. Chakar; S. Dehilis; W. Merchela; H. Guebbai. $\rho-F$-contraction fixed point theorem. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 485-493. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a6/
[1] N. Secelean, D. Wardowski, “New fixed point tools in non-metrizable spaces”, Results in Mathematics, 72:3 (2017), 919–935 | DOI | MR | Zbl
[2] D. Wardowski, “Fixed points of a new type of contractive mappings in complete metric spaces”, Fixed Point Theory and Applications, 94 (2012), Article number: 94(2012) | MR
[3] H. Piri, P. Kumam, “Some fixed point theorems concerning $F$-contraction in complete metric spaces”, FFixed Point Theory and Applications, 210 (2014), Article number: 210(2014) | MR
[4] E. Karapinar, M. A. Kutbi, H. Piri, D. O’Regan, “Fixed points of conditionally $F$-contractions in complete metric-like spaces”, Fixed Point Theory and Applications, 126 (2015), Article number: 126(2015) | MR
[5] J. Z. Vujakovi, S. N. Radenović, “On some $F$-contraction of Piri–Kumam–Dung-type mappings in metric spaces”, Military Technical Courier, 68:4 (2020), 697–714
[6] S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales”, Fundamenta Mathematicae, 3:1 (1922), 133–181 | DOI | MR
[7] M. A. Alghamdi, N. Hussain, P. Salimi, “Fixed point and coupled fixed point theorems on $b$-metric-like spaces”, Journal of Inequalities and Applications, 2013:7 (2013), Article number: 402, 2591–2601 | MR
[8] T. G. Bhaskar, V. Lakshmikantham, “Fixed point theorems in partially ordered metric spaces and applications”, Nonlinear Analysis: Theory, Methods Applications, 65:7 (2006), 1379-1393 | DOI | MR | Zbl
[9] D. Turkoglu, C. Alaca, Y. J. Cho, C. Yildiz, “Common fixed point theorems in intuitionistic fuzzy metric spaces”, Journal of Applied Mathematics and Computing, 22:1–1 (2006), 411–424 | DOI | MR | Zbl
[10] I. Arandjelović, Z. Kadelburg, S. Radenović, “Boyd–Wong-type common fixed point results in cone metric spaces”, Applied Mathematics and Computation, 217:17 (2011), 7167–7171 | DOI | MR | Zbl
[11] A. Awais, M. Nazam, M. Arshad, S. O. Kim, “$F$-metric, $F$-contraction and common fixed-point theorems with applications”, Mathematics, 7:7 (2019), Article number: 586, 221–231
[12] J. Ahmad, J. Al-Rawashdeh, A. Azam, “New fixed point theorems for generalized $F$-contractions in complete metric spaces”, Fixed Point Theory and Algorithms for Sciences and Engineering, 80 (2015), 1–18 | MR
[13] M. Cvetković, “The relation between $F$-contraction and Meir–Keeler contraction”, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117 (2023), Article number: 39
[14] E. S. Zhukovskiy, “The fixed points of contractions of $F$-quasimetric spaces”, Siberian Mathematical Journal, 59:6 (2018), 1338–1350 | DOI | MR | Zbl