@article{VTAMU_2024_29_148_a5,
author = {V. I. Sumin and M. I. Sumin},
title = {Regularization of classical optimality conditions
in optimization problems of linear distributed {Volterra-type} systems with pointwise state constraints},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {455--484},
year = {2024},
volume = {29},
number = {148},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a5/}
}
TY - JOUR AU - V. I. Sumin AU - M. I. Sumin TI - Regularization of classical optimality conditions in optimization problems of linear distributed Volterra-type systems with pointwise state constraints JO - Vestnik rossijskih universitetov. Matematika PY - 2024 SP - 455 EP - 484 VL - 29 IS - 148 UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a5/ LA - ru ID - VTAMU_2024_29_148_a5 ER -
%0 Journal Article %A V. I. Sumin %A M. I. Sumin %T Regularization of classical optimality conditions in optimization problems of linear distributed Volterra-type systems with pointwise state constraints %J Vestnik rossijskih universitetov. Matematika %D 2024 %P 455-484 %V 29 %N 148 %U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a5/ %G ru %F VTAMU_2024_29_148_a5
V. I. Sumin; M. I. Sumin. Regularization of classical optimality conditions in optimization problems of linear distributed Volterra-type systems with pointwise state constraints. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 455-484. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a5/
[1] V. I. Sumin, M. I. Sumin, “Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Komp`yuternye nauki, 31:2 (2021), 265–284 (In Russian) | MR | Zbl
[2] V. I. Sumin, M. I. Sumin, “Regularization of the classical optimality conditions in optimal control problems for linear distributed systems of Volterra type”, Comput. Math. Math. Phys., 62:1 (2022), 42–65 | DOI | DOI | MR | Zbl
[3] V. I. Sumin, M. I. Sumin, “On regularization of the Lagrange principle in the optimization problems for linear distributed Volterra type systems with operator constraints”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 59 (2022), 85–113 (In Russian) | MR | Zbl
[4] V. I. Sumin, M. I. Sumin, “On the iterative regularization of the Lagrange principle in convex optimal control problems for distributed systems of the Volterra type with operator constraints”, Differ. Equ., 58:6 (2022), 791–809 | DOI | MR | Zbl
[5] V. I. Sumin, M. I. Sumin, “Regularization of classical optimality conditions in optimization problems for linear Volterra-type systems with functional constraints”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 28:143 (2023), 298–325 (In Russian) | Zbl
[6] V. I. Sumin, M. I. Sumin, “On regularization of classical optimality conditions in convex optimization problems for Volterra-type systems with operator constraints”, Differ. Equ., 60:2 (2024), 227–246 | DOI | DOI | MR | Zbl
[7] V. I. Sumin, Functional Volterra Equations in the Theory of Optimal Control of Distributed Systems, Publishing House of Nizhnii Novgorod State University, Nizhnii Novgorod, 1992 (In Russian)
[8] V. I. Sumin, A. V. Chernov, “Operators in the spaces of measurable functions: the Volterra property and quasinilpotency”, Differ. Equ., 34:10 (1998), 1403–1411 | MR | Zbl
[9] I. Ts. Gokhberg, M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, American Mathematical Society, Providence, 1970 | MR | Zbl
[10] V. I. Sumin, “Volterra functional-operator equations in the theory of the optimal control of distributed systems”, Sov. Math., Dokl., 39:2 (1989), 374–378 | MR | Zbl
[11] V. I. Sumin, “Controlled Volterra functional equations and the contraction mapping principle”, Trudy Inst. Mat. Mekh. UrO RAN, 25:1 (2019), 262–278 (In Russian) | MR
[12] V. I. Sumin, “Controlled Volterra functional equations in Lebesgue spaces”, Vestn. Nizhegorod. un-ta. Matematicheskoe modelirovanie i optimal`noe upravlenie, 1998, no. 2(19), 138–151 (In Russian)
[13] R. V. Gamkrelidze, “Optimal control processes for bounded phase coordinates”, Izv. Akad. Nauk SSSR Ser. Mat., 24:3 (1960), 316–356 (In Russian) | Zbl
[14] A. D. Ioffe, V. M. Tikhomirov, Theory of Extremal Problems, North-Holland Publishing Company, Amsterdam–New York–Oxford, 1979 | MR | MR | Zbl
[15] A. V. Arutyunov, Optimality conditions: Abnormal and Degenerate Problems, Kluwer Academic Publishers, Dordrecht–Boston–London, 2000 | MR | MR | Zbl
[16] A. A. Milyutin, A. V. Dmitruk, N. P. Osmolovsky, The Maximum Principle in Optimal Control, Center for Applied Research of the Faculty of Mechanics and Mathematics of Moscow State University, Moscow, 2004 (In Russian)
[17] M. I. Sumin, “Duality-based regularization in a linear convex mathematical programming problem”, Comput. Math. Math. Phys., 47:4 (2007), 579–600 | DOI | MR | Zbl
[18] M. I. Sumin, “Parametric dual regularization for an optimal control problem with pointwise state constraints”, Comput. Math. Math. Phys., 49:12 (2009), 1987–2005 | DOI | MR | Zbl
[19] M. I. Sumin, “Regularized parametric Kuhn–Tucker theorem in a Hilbert space”, Comput. Math. Math. Phys., 51:9 (2011), 1489–1509 | DOI | MR | Zbl
[20] M. I. Sumin, “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems”, Trudy Inst. Mat. Mekh. UrO RAN, 25:1 (2019), 279–296 (In Russian) | MR
[21] M. I. Sumin, “Lagrange principle and its regularization as a theoretical basis of stable solving optimal control and inverse problems”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 26:134 (2021), 151–171 (In Russian) | Zbl
[22] M. I. Sumin, “On ill-posed problems, extremals of the Tikhonov functional and the regularized Lagrange principles”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 27:137 (2022), 58–79 (In Russian) | Zbl
[23] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972 | MR | Zbl
[24] E. G. Golshtein, Duality Theory in Mathematical Programming and Its Applications, Nauka Publ., Moscow, 1971 (In Russian)
[25] M. I. Sumin, “On regularization of the classical optimality conditions in convex optimal control problems”, Trudy Inst. Mat. Mekh. UrO RAN, 26:2 (2020), 252–269 (In Russian) | MR
[26] M. I. Sumin, “Regularization of Pontryagin maximum principle in optimal control of distributed systems”, Ural Math. J., 2:2 (2016), 72–86 | DOI | MR | Zbl
[27] F. P. Vasil’ev, Optimization Methods: in 2 books, MCCME, Moscow, 2011 (In Russian)
[28] J. -P. Aubin, L’analyse non Lineaire et ses Motivations Economiques, Masson, Paris–New York, 1984 | MR | MR
[29] F. H. Clarke, Optimization and Nonsmooth Analysis, A Wiley–Interscience Publication John Wiley and Sons, New York–Chichester–Brisbane–Toronto–Singapore, 1983 | MR | Zbl
[30] J. -P. Aubin, I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984 | MR | MR | Zbl