Keywords: several variable delays, compact scheme, piecewise linear interpolation
@article{VTAMU_2024_29_148_a4,
author = {V. G. Pimenov and A. V. Lekomtsev},
title = {A compact scheme for solving a superdiffusion equation
with several variable delays},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {440--454},
year = {2024},
volume = {29},
number = {148},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a4/}
}
TY - JOUR AU - V. G. Pimenov AU - A. V. Lekomtsev TI - A compact scheme for solving a superdiffusion equation with several variable delays JO - Vestnik rossijskih universitetov. Matematika PY - 2024 SP - 440 EP - 454 VL - 29 IS - 148 UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a4/ LA - ru ID - VTAMU_2024_29_148_a4 ER -
%0 Journal Article %A V. G. Pimenov %A A. V. Lekomtsev %T A compact scheme for solving a superdiffusion equation with several variable delays %J Vestnik rossijskih universitetov. Matematika %D 2024 %P 440-454 %V 29 %N 148 %U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a4/ %G ru %F VTAMU_2024_29_148_a4
V. G. Pimenov; A. V. Lekomtsev. A compact scheme for solving a superdiffusion equation with several variable delays. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 440-454. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a4/
[1] J. Wu, Theory and Application of Partial Functional Differential Equations, Springer–Verlag, New York, 1996 | MR
[2] A. D. Polyanin, V. G. Sorokin, A. I. Zhurov, Delay Ordinary and Partial Differential Equations, CRC Press, Boca Raton, 2023 | MR
[3] Z. Kamont, K. Kropielnicka, “Implicit difference methods for evolution functional differential equations”, Numerical Analysis and Applications, 4:4 (2011), 294–308 | DOI | MR | Zbl
[4] V. G. Pimenov, Difference Methods for Solving Partial Differential Equations with Heredity, Publishing House of the Ural University, Yekaterinburg, 2014 (In Russian)
[5] M. M. Meerschaert, C. Tadjeran, “Finite difference approximations for two-sided space-fractional partial differential equations”, Applied Numerical Mathematics, 56:1 (2006), 80–90 | DOI | MR | Zbl
[6] C. Tadjeran, M. M. Meerschaert, H. P. Scheffler, “A second-order accurate numerical approximation for the fractional diffusion equation”, Journal of Computational Physics, 213:1 (2006), 205–213 | DOI | MR | Zbl
[7] C. Celik, M. Duman, “Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative”, Journal of Computational Physics, 231:4 (2012), 1743–1750 | DOI | MR | Zbl
[8] W. Tian, H. Zhou, W. Deng, “A class of second order difference approximations for solving space fractional diffusion equations”, Mathematics of Computation, 84 (2015), 1703–1727 | DOI | MR | Zbl
[9] V. G. Pimenov, A. S. Hendy, “A fractional analog of Crank-Nicholson method for the two sided space fractional partial equation with functional delay”, Ural Mathematical Journal, 2:1 (2016), 48–57 | DOI | Zbl
[10] M. Ibrahim, V. G. Pimenov, “Crank–Nicolson scheme for two-dimensional in space fractional diffusion equations with functional delay”, Izv. IMI UdGU, 57 (2021), 128–141 | MR | Zbl
[11] V. G. Pimenov, A. B. Lozhnikov, “Asymptotic expansion of the error of a numerical method for solving a superdiffusion equation with functional delay”, Trudy Inst. Mat. i Mekh. UrO RAN, 30, no. 2, 2024, 138–151 (In Russian)
[12] G. H. Gao, Z. Z. Sun, “A compact finite difference scheme for the fractional sub-diffusion equations”, Journal of Computational Physics, 230:3 (2011), 586–595 | DOI | MR | Zbl
[13] A. S. Hendy, J. E. Macias–Diaz, “A discrete Gronwall inequality and energy estimates in the analysis of a discrete model for a nonlinear time-fractional heat equation”, Mathematics, 8:9 (2020), 1–15 | DOI
[14] H. Sun, Z. Z. Sun, G. H. Gao, “Some high order difference schemes for the space and time fractional Bloch–Torrey equations”, Applied Mathematics and Computation, 281 (2016), 356–380 | DOI | MR | Zbl
[15] L. Li, B. Zhou, X. Chen, Z. Wang, “Convergence and stability of compact finite difference method for nonlinear time fractional reaction–diffusion equations with delay”, Applied Mathematics and Computation, 337 (2018), 144–152 | DOI | MR | Zbl
[16] A. V. Kim, V. G. Pimenov, i-Smooth Analysis and Numerical Methods for Solving Functional Differential Equations, Regular and Chaotic Dynamics, Moscow–Izhevsk, 2004 (In Russian)