Decomposition of modules over generalized Dickson algebras
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 425-439
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to modules over generalized Dickson algebras. These algebras are nonassociative and generally can be nonalternative. They compose an important class of algebras and an area in mathematics. Left, right and two-sided modules over generalized Dickson algebras are studied. Their structure and submodules are investigated. Bimodules with involution are scrutinized over generalized Dickson algebras with involution. Such bimodules have specific features caused by involution. Minimal submodules and decomposition of modules are investigated. In particular, cyclic submodules are studied.
Keywords: generalized Dickson algebra, involution, ring
Mots-clés : module, decomposition
@article{VTAMU_2024_29_148_a3,
     author = {S. V. Ludkovsky},
     title = {Decomposition of modules over generalized {Dickson} algebras},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {425--439},
     year = {2024},
     volume = {29},
     number = {148},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a3/}
}
TY  - JOUR
AU  - S. V. Ludkovsky
TI  - Decomposition of modules over generalized Dickson algebras
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2024
SP  - 425
EP  - 439
VL  - 29
IS  - 148
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a3/
LA  - en
ID  - VTAMU_2024_29_148_a3
ER  - 
%0 Journal Article
%A S. V. Ludkovsky
%T Decomposition of modules over generalized Dickson algebras
%J Vestnik rossijskih universitetov. Matematika
%D 2024
%P 425-439
%V 29
%N 148
%U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a3/
%G en
%F VTAMU_2024_29_148_a3
S. V. Ludkovsky. Decomposition of modules over generalized Dickson algebras. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 425-439. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a3/

[1] L. E. Dickson, The Collected Mathematical Papers, Cambridge Library Collection – Mathematics, 1–5, Chelsea Publishing Co., New York, 1975

[2] K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov, A. I. Shirshov, Rings that are Nearly Associative, Academic Press, New York, 1982 | MR | Zbl

[3] R. B. Brown, “On generalized Cayley–Dickson algebras”, Pacific Journal of Mathematics, 20:3 (1967), 415–422 | DOI | MR | Zbl

[4] J. C. Baez, “The octonions”, Bull. Amer. Math. Soc., 39:2 (2002), 145–205 | DOI | MR | Zbl

[5] R. D. Schafer, An Introduction to Nonassociative Algebras, Academic Press, New York, 1966 | MR | Zbl

[6] S. V. Ludkowski, “Completions and homomorphisms of infinite dimensional Cayley–Dickson algebras”, Linear Multilinear Algebra, 69:11 (2021), 2040–2049 | DOI | MR | Zbl

[7] D. Allcock, “Reflection groups and octave hyperbolic plane”, J. Algebra, 213:2 (1998), 467–498 | DOI | MR

[8] A. Belov, L. Bokut, L. Rowen, J.-T. Yu, “The Jacobian conjecture, together with Specht and Burnside-type problems”, Automorphisms and birational affine geometry, Springer Proceedings in Mathematics and Statistics, 79, ed. I. Cheltsov, 2014, 249–285 | MR | Zbl

[9] N. Bourbaki, Algebra, Springer, Berlin, 2022

[10] N. Jacobson, “Cayley numbers and normal simple Lie algebras of type $G$”, Duke Math. J., 5 (1939), 775–783 | DOI | MR | Zbl

[11] M. Goto, F. D. Grosshans, Semisimple Lie Algebras, Marcel Dekker, Inc., New York, 1978 | MR | Zbl

[12] P. Eakin, A. Sathaye, “On automoprhisms and derivations of Cayley–Dickson algebras”, J. Algebra, 129:2 (1990), 263–278 | DOI | MR | Zbl

[13] H. B. Lawson, M.-L. Michelson, Spin Geometry, Princ. Univ. Press, Princeton, 1989 | MR | Zbl

[14] C. Culbert, “Cayley–Dickson algebras and loops”, J. Gener. Lie Theory Appl., 1:1 (2007), 1–17 | DOI | MR | Zbl

[15] S. V. Ludkovsky, “$C^*$-algebras of meta-invariant operators in modules over Cayley–Dickson algebras”, Southeast Asian Bull. Math., 39:5 (2015), 625–684 | MR | Zbl

[16] S. V. Ludkovsky, W. Sprössig, “Spectral representations of operators in Hilbert spaces over quaternions and octonions”, Complex Var. Elliptic Equ., 57:12 (2012), 1301–1324 | DOI | MR | Zbl

[17] S. V. Ludkovsky, W. Sprössig, “Spectral theory of super-differential operators of quaternion and octonion variables”, Adv. Appl. Clifford Algebr., 21:1 (2011), 165–191 | DOI | MR | Zbl

[18] F. Gürsey, C.-H. Tze, On the Role of Division, Jordan and Related Algebras in Particle Physics, World Scientific Publ. Co., Singapore, 1996 | MR | Zbl

[19] A. V. Shatina, A. S. Borets, “A mathematical model of the gravitational potential of the planet taking into account tidal deformations”, Russian Technol J., 12:2 (2024), 77–89 | DOI

[20] S. V. Ludkovsky, “Integration of vector Sobolev type PDE over octonions”, Complex Var. Elliptic Equ., 61:7 (2016), 1014–1035 | DOI | MR | Zbl

[21] S. V. Ludkovsky, “Integration of vector hydrodynamical partial differential equations over octonions”, Complex Var. Elliptic Equ., 58:5 (2013), 579–609 | DOI | MR | Zbl

[22] V. N. Markov, A. V. Mikhalev, A. A. Nechaev, “Nonassociative algebraic structures in cryptography and coding”, J. Math. Sci. (N.Y.), 245:2 (2020), 178–196 | DOI | MR | Zbl