Mots-clés : singular solution, Levenberg–Marquardt method, extrapolation
@article{VTAMU_2024_29_148_a2,
author = {A. F. Izmailov and E. I. Uskov},
title = {Accelerating convergence of {Newton-type} methods to singular solutions of nonlinear equations},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {401--424},
year = {2024},
volume = {29},
number = {148},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a2/}
}
TY - JOUR AU - A. F. Izmailov AU - E. I. Uskov TI - Accelerating convergence of Newton-type methods to singular solutions of nonlinear equations JO - Vestnik rossijskih universitetov. Matematika PY - 2024 SP - 401 EP - 424 VL - 29 IS - 148 UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a2/ LA - ru ID - VTAMU_2024_29_148_a2 ER -
%0 Journal Article %A A. F. Izmailov %A E. I. Uskov %T Accelerating convergence of Newton-type methods to singular solutions of nonlinear equations %J Vestnik rossijskih universitetov. Matematika %D 2024 %P 401-424 %V 29 %N 148 %U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a2/ %G ru %F VTAMU_2024_29_148_a2
A. F. Izmailov; E. I. Uskov. Accelerating convergence of Newton-type methods to singular solutions of nonlinear equations. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 401-424. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a2/
[1] A. Griewank, Analysis and Modification of Newton's Method at Singularities, PhD Thesis, Australian National University, Canberra, 1980 | MR
[2] A. Griewank, “On solving nonlinear equations with simple singularities or nearly singular solutions”, SIAM Review, 27 (1985), 537–563 | DOI | MR | Zbl
[3] A. F. Izmailov, M. V. Solodov, Newton-Type Methods for Optimization and Variational Problems, Springer Series in Operations Research and Financial Engineering, Springer, Cham, 2014, 573 pp. | DOI | MR | Zbl
[4] K. Levenberg, “A method for the solution of certain non-linear problems in least squares”, Quarterly of Applied Mathematics, 2 (1944), 164–168 | DOI | MR | Zbl
[5] D. W. Marquardt, “An algorithm for least squares estimation of non-linear parameters”, SIAM J., 11 (1963), 431–441 | MR | Zbl
[6] J. E. Dennis, Jr., R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Inc., Englewood Cliffs, 1983 | MR | MR | Zbl
[7] A. Fischer, A. F. Izmailov, M. V. Solodov, “The Levenberg–Marquardt method: an overview of modern convergence theories and more”, Computational Optimization and Applications, 89:1 (2024), 33–67 | DOI | MR | Zbl
[8] F. Facchinei, A. Fischer, M. Herrich, “An LP-Newton method: Nonsmooth equations, KKT systems, and nonisolated solutions”, Mathematical Programming, 146 (2014), 1–36 | DOI | MR | Zbl
[9] A. F. Izmailov, A. A. Tret'yakov, 2-Regular Solutions of Nonlinear Problems. Theorey and Numerical Methods, Fizmatlit Publ., Moscow, 1999 (In Russian)
[10] A. F. Izmailov, A. S. Kurennoy, M. V. Solodov, “Critical solutions of nonlinear equations: local attraction for Newton-type methods”, Mathematical Programming, 167:2 (2018), 355–379 | DOI | MR | Zbl
[11] A. Fischer, A. F. Izmailov, M. Jelitte, “Behavior of Newton-type methods near critical solutions of nonlinear equations with semismooth derivatives”, Journal of Optimization Theory and Applications, 2023, New Trends in Optimization, Control, and Their Applications: A Special Issue Dedicated to Boris Sh. Mordukhovich | MR
[12] A. Fischer, A. F. Izmailov, M. V. Solodov, “Accelerating convergence of the globalized Newton method to critical solutions of nonlinear equations”, Computational Optimization and Applications, 78:1 (2021), 273–286 | DOI | MR | Zbl
[13] A. Fischer, A. F. Izmailov, M. V. Solodov, “Unit stepsize for the Newton method close to critical solutions”, Mathematical Programming, 187:1–2 (2021), 697–721 | DOI | MR | Zbl
[14] A. Fischer, A. F. Izmailov, M. Jelitte, “Newton-type methods near critical solutions of piecewise smooth nonlinear equations”, Computational Optimization and Applications, 80:2 (2021), 587–615 | DOI | MR | Zbl
[15] A. Griewank, “Starlike domains of convergence for Newton's method at singularities”, Numerische Mathematik, 35 (1980), 95–111 | DOI | MR | Zbl
[16] A. Fischer, P. K. Shukla, “A Levenberg–Marquardt algorithm for unconstrained multicriteria optimization”, Operations Research Letters, 36 (2008), 643–646 | DOI | MR | Zbl
[17] A. Fischer, M. Herrich, A. F. Izmailov, M. V. Solodov, “A globally convergent LP-Newton method”, SIAM J. on Optimization, 26 (2016), 2012–2033 | DOI | MR | Zbl
[18] J. J. Moré, B. S. Garbow, K. E. Hillstrom, “Testing unconstrained optimization software”, ACM Transactions of Mathematical Software, 7 (1981), 17–41 | DOI | MR | Zbl
[19] R. B. Schnabel, P. D. Frank, “Tensor methods for nonlinear equations”, SIAM J. on Numerical Analysis, 21 (1984), 815–843 | DOI | MR | Zbl
[20] E. D. Dolan, J. J. More, “Benchmarking optimization software with performance profiles”, Mathematical Programming, 91 (2002), 201–213 | DOI | MR | Zbl
[21] A. F. Izmailov, M. V. Solodov, E. I. Uskov, “Combining stabilized SQP with the augmented Lagrangian algorithm”, Computational Optimization and Applications, 62 (2015), 405–429 | DOI | MR | Zbl
[22] A. F. Izmailov, “New implementations of the 2-factor method”, Computational Mathematics and Mathematical Physics, 55:6 (2015), 922–934 | DOI | DOI | MR | Zbl