On the recalculation of ellipsoids in estimating the error of the implicit Stormer method for a second-order linear differential equation
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 391-400 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, a new method is proposed for constructing an error estimate for the numerical solution of the Cauchy problem for a second-order differential equation obtained using the implicit Stormer method. Unlike the previously proposed methods, it allows one to take into account the signs of small terms when recalculating ellipsoids containing the exact solution in the case of implicit multistep numerical method. This leads to a more accurate estimation of the error of the numerical solution and the applicability of the ellipsoid method over large intervals. A numerical experiment is presented demonstrating the effectiveness of the proposed method for obtaining a guaranteed error estimate of the implicit Stormer method.
Keywords: ellipsoid method, the Stormer method, numerical solution of the Cauchy problem for second-order ODEs
Mots-clés : error estimation
@article{VTAMU_2024_29_148_a1,
     author = {N. D. Zolotareva},
     title = {On the recalculation of ellipsoids in estimating the error of~the~implicit {Stormer} method for a second-order linear~differential~equation},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {391--400},
     year = {2024},
     volume = {29},
     number = {148},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a1/}
}
TY  - JOUR
AU  - N. D. Zolotareva
TI  - On the recalculation of ellipsoids in estimating the error of the implicit Stormer method for a second-order linear differential equation
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2024
SP  - 391
EP  - 400
VL  - 29
IS  - 148
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a1/
LA  - ru
ID  - VTAMU_2024_29_148_a1
ER  - 
%0 Journal Article
%A N. D. Zolotareva
%T On the recalculation of ellipsoids in estimating the error of the implicit Stormer method for a second-order linear differential equation
%J Vestnik rossijskih universitetov. Matematika
%D 2024
%P 391-400
%V 29
%N 148
%U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a1/
%G ru
%F VTAMU_2024_29_148_a1
N. D. Zolotareva. On the recalculation of ellipsoids in estimating the error of the implicit Stormer method for a second-order linear differential equation. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 148, pp. 391-400. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_148_a1/

[1] R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to interval analysis, Society for Industrial and Applied Mathematics, Philadelphia, 2009, 234 pp. | MR | Zbl

[2] N. D. Zolotareva, “Ellipsoid method for estimating the global error of the Stormer method”, Moscow University Computational Mathematics and Cybernetics, 2002, no. 1, 20–26 | MR | Zbl

[3] N. D. Zolotareva, “New approach to Shtermer's method guaranteed error assessment using ellipsoids”, Moscow University Computational Mathematics and Cybernetics, 2002, no. 3, 3–9 (In Russian) | MR | Zbl

[4] N. D. Zolotareva, “On a new method for obtaining a guaranteed error estimate for Numerov's method using ellipsoids”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 27:139 (2022), 261–269 (In Russian) | Zbl

[5] O. B. Arushanyan, S. F. Zaletkin, Numerical Solution of Ordinary Differential Equations in Fortran, Moscow University Publishing House, Moscow, 1990, 335 pp. (In Russian) | MR

[6] F. L. Chernousko, Estimation of the Phase State of Dynamic Systems, Nauka Publ., Moscow, 1988 (In Russian)

[7] Yu. N. Reshetnyak, “Summation of ellipsoids in the guaranteed estimation problem”, Journal of Applied Mathematics and Mechanics, 53:2 (1989), 193–197 | DOI | MR | Zbl