@article{VTAMU_2024_29_147_a4,
author = {E. A. Mikishanina},
title = {Omniwheel implementation of the {Suslov} problem with a rheonomic constraint: dynamic model and control},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {296--308},
year = {2024},
volume = {29},
number = {147},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a4/}
}
TY - JOUR AU - E. A. Mikishanina TI - Omniwheel implementation of the Suslov problem with a rheonomic constraint: dynamic model and control JO - Vestnik rossijskih universitetov. Matematika PY - 2024 SP - 296 EP - 308 VL - 29 IS - 147 UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a4/ LA - ru ID - VTAMU_2024_29_147_a4 ER -
%0 Journal Article %A E. A. Mikishanina %T Omniwheel implementation of the Suslov problem with a rheonomic constraint: dynamic model and control %J Vestnik rossijskih universitetov. Matematika %D 2024 %P 296-308 %V 29 %N 147 %U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a4/ %G ru %F VTAMU_2024_29_147_a4
E. A. Mikishanina. Omniwheel implementation of the Suslov problem with a rheonomic constraint: dynamic model and control. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 147, pp. 296-308. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a4/
[1] G. K. Suslov, Theoretical mechanics, Gostekhizdat, Moscow-Leningrad, 1946 (In Russian)
[2] V. Vagner, “Geometric interpretation of the motion of nonholonomic dynamical systems”, Proceedings of the Seminar on Vector and Tensor Analysis, 1941, no. 5, 301–327 (In Russian)
[3] L. C. Garcia–Naranjo, A. J. Maciejewsk, J. C. Marrero, M. Przybylska, “The inhomogeneous Suslov problem”, Physics Letters A, 378:32–33 (2013), 2389–2394
[4] A. V. Borisov, E. A. Mikishanina, “Two nonholonomic chaotic systems. Part I. On the Suslov problem”, Regular and Chaotic Dynamics, 25:3 (2020), 313–322 | DOI
[5] A. V. Borisov, I. S. Mamaev, A. A. Kilin, “Hamiltonicity and integrability of the Suslov problem”, Regular and Chaotic Dynamics, 16:1–2 (2011), 104–116 | DOI
[6] A. D. Bilimovitch, “Sur les systemes conservatifs, non holonomes avec des liaisons dependantes du temps”, Comptes rendus de l'Académie des Sciences, 156 (1913), 12–18
[7] A. V. Borisov, A. V. Tsiganov, E. A. Mikishanina, “On inhomogeneous nonholonomic Bilimovich system”, Communications in Nonlinear Science and Numerical Simulation, 94 (2021), 105573 | DOI
[8] V. I. Kirgetov, “The motion of controlled mechanical systems with prescribed constraints (servoconstraints)”, Journal of Applied Mathematics and Mechanics, 31:3 (1967), 465–477 | DOI
[9] E. A. Mikishanina, “Rolling motion dynamics of a spherical robot with a pendulum actuator controlled by the Bilimovich servo-constraint”, Theoretical and Mathematical Physics, 211:2 (2022), 679–691 | DOI | DOI
[10] V. V. Kozlov, “The dynamics of systems with servoconstraints. I”, Regular and Chaotic Dynamics, 20:3 (2015), 205–224 | DOI
[11] N. N. Bautin, E. A. Leontovich, Methods and Techniques of Qualitative Research of Dynamical Systems on a Plane, Nauka Publ., Moscow, 1990 (In Russian)
[12] I. Bizyaev, S. Bolotin, I. Mamaev, “Normal forms and averaging in an acceleration problem in nonholonomic mechanics”, Chaos, 31:1 (2021), 013132 | DOI
[13] E. A. Mikishanina, “The problem of acceleration in the dynamics of a double-link wheeled vehicle with arbitrarily directed periodic exitation”, Theoretical and Applied Mechanics, 50:2 (2023), 205–221 | DOI
[14] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. O. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, World Scientific, Singapore, New Jersey, London, Hong Kong, 2001
[15] V. R. Barseghyan, T. A. Simonyan, A. G. Matevosyan, “On one problem of quadcopter control with given intermediate values of different parts of coordinates”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 29:145 (2024), 29–42 (In Russian)
[16] A. A. Kilin, Yu. L. Karavaev, “The kinematic control model for a spherical robot with an unbalanced internal omniwheel platform”, Russian Journal of Nonlinear Dynamics, 10:4 (2014), 497–511 (In Russian)
[17] A. A. Kilin, Yu. L. Karavaev, “The dynamic of a spherical robot with an internal omniwheel platform”, Russian Journal of Nonlinear Dynamics, 11:1 (2015), 187–204 (In Russian)
[18] J. Carr, Applications of Centre Manifold Theory, Springer–Verlag, New York, 1981