@article{VTAMU_2024_29_147_a2,
author = {T. V. Zhukovskaya and E. S. Zhukovskiy and M. A. Rybakov and A. S. Trofimova},
title = {Method of approximate solution of partial derivative equations},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {255--267},
year = {2024},
volume = {29},
number = {147},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a2/}
}
TY - JOUR AU - T. V. Zhukovskaya AU - E. S. Zhukovskiy AU - M. A. Rybakov AU - A. S. Trofimova TI - Method of approximate solution of partial derivative equations JO - Vestnik rossijskih universitetov. Matematika PY - 2024 SP - 255 EP - 267 VL - 29 IS - 147 UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a2/ LA - ru ID - VTAMU_2024_29_147_a2 ER -
%0 Journal Article %A T. V. Zhukovskaya %A E. S. Zhukovskiy %A M. A. Rybakov %A A. S. Trofimova %T Method of approximate solution of partial derivative equations %J Vestnik rossijskih universitetov. Matematika %D 2024 %P 255-267 %V 29 %N 147 %U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a2/ %G ru %F VTAMU_2024_29_147_a2
T. V. Zhukovskaya; E. S. Zhukovskiy; M. A. Rybakov; A. S. Trofimova. Method of approximate solution of partial derivative equations. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 147, pp. 255-267. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a2/
[1] V. S. Vladimirov, Equations of Mathematical Physics, Nauka Publ., Moscow, 1981 (In Russian)
[2] M. M. Lavrent'ev, On Some Ill-Posed Problems of Mathematical Physics, Academy of Sciences Publ., Novosibirsk, 1962 (In Russian)
[3] L. V. Kantorovich, V. I. Krylov, Methods of Approximate Solution of Partial Differential Equations, ONTI NKTP USSR, Main editorial board of general technical literature, Leningrad–Moscow, 1936 (In Russian)
[4] A. N. Tikhonov, V. {Ya}. Arsenin, Methods for Solving Ill-Posed Problems, Nauka Publ., Moscow, 1979 (In Russian)
[5] M. Joachimiak, “Choice of the regularization parameter for the Cauchy problem for the Laplace equation”, International Journal of Numerical Methods for Heat Fluid Flow, 30:10 (2020), 4475–4492 | DOI
[6] E. B. Laneev, A. V. Klimishin, “On an approximate solution to an ill-posed mixed boundary value problem for the Laplace equation in a cylindrical domain with homogeneous conditions of the second kind on the lateral surface of the cylinder”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 29:146 (2024), 164–175 (In Russian \newpage)
[7] V. Vazov, J. Forsythe, Difference Methods for Solving Partial Differential Equations, Foreign Literature Publishing House, Moscow, 1963 (In Russian)
[8] A. V. Rodionov, “Some number-theoretic methods for solving partial derivatives”, Chebyshevskii Sb., 22:3 (2021), 256–297 (In Russian) | DOI
[9] N. S. Koshlyakov, E. B. Gliner, M. M. Smirnov, Partial Differential Equations of Mathematical Physics, Vysshaya Shkola Publ., Moscow, 1970 (In Russian)
[10] V. V. Provotorov, M. A. Rybakov, “Solution of the initial boundary value problem in symbolic form”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 28:142 (2023), 203–212 (In Russian)
[11] T. V. Zhukovskaya, E. A. Molokanova, “Numerical methods for solution of evolutionary functional differential equations”, Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki = Tambov University Reports. Series: Natural and Technical Sciences, 17:5 (2012), 1352–1359 (In Russian)