Optimal estimates of the number of links of basis horizontal broken lines for 2-step Carnot groups with horizontal distribution of corank 1
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 147, pp. 244-254

Voir la notice de l'article provenant de la source Math-Net.Ru

For a 2-step Carnot group $\Bbb D_n,$ $\dim\Bbb D_n=n+1,$ with horizontal distribution of corank 1, we proved that the minimal number $N_{\mathcal{X}_{\Bbb D_n}}$ such that any two points $u,v\in\Bbb D_n$ can be joined by some basis horizontal $k$-broken line (i.e. a broken line consisting of $k$ links) $L^{\mathcal{X}_{\Bbb D_n}}_k(u,v),$ $k\leq N_{\mathcal{X}_{\Bbb D_n}},$ does not exeed $n+2.$ The examples of $\Bbb D_n$ such that $N_{\mathcal{X}_{\Bbb D_n}}=n+i,$ $i=1,2,$ were found. Here $\mathcal{X}_{\Bbb D_n}=\{X_1,\ldots,X_n\}$ is the set of left invariant basis horizontal vector fields of the Lie algebra of the group $\Bbb D_n,$ and every link of $L^{\mathcal{X}_{\Bbb D_n}}_k(u,v)$ has the form $\exp(asX_i)(w),$ $s\in[0,s_0],$ $a=const.$
Keywords: horizontal curves, broken lines, Rashevskii–Chow theorem, $2$-step Carnot groups, basis vector fields
@article{VTAMU_2024_29_147_a1,
     author = {A. V. Greshnov and R. I. Zhukov},
     title = {Optimal estimates of the number of links of basis horizontal broken lines for 2-step {Carnot} groups with horizontal distribution of corank 1},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {244--254},
     publisher = {mathdoc},
     volume = {29},
     number = {147},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a1/}
}
TY  - JOUR
AU  - A. V. Greshnov
AU  - R. I. Zhukov
TI  - Optimal estimates of the number of links of basis horizontal broken lines for 2-step Carnot groups with horizontal distribution of corank 1
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2024
SP  - 244
EP  - 254
VL  - 29
IS  - 147
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a1/
LA  - ru
ID  - VTAMU_2024_29_147_a1
ER  - 
%0 Journal Article
%A A. V. Greshnov
%A R. I. Zhukov
%T Optimal estimates of the number of links of basis horizontal broken lines for 2-step Carnot groups with horizontal distribution of corank 1
%J Vestnik rossijskih universitetov. Matematika
%D 2024
%P 244-254
%V 29
%N 147
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a1/
%G ru
%F VTAMU_2024_29_147_a1
A. V. Greshnov; R. I. Zhukov. Optimal estimates of the number of links of basis horizontal broken lines for 2-step Carnot groups with horizontal distribution of corank 1. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 147, pp. 244-254. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a1/