Optimal estimates of the number of links of basis horizontal broken lines for 2-step Carnot groups with horizontal distribution of corank 1
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 147, pp. 244-254 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a 2-step Carnot group $\Bbb D_n,$ $\dim\Bbb D_n=n+1,$ with horizontal distribution of corank 1, we proved that the minimal number $N_{\mathcal{X}_{\Bbb D_n}}$ such that any two points $u,v\in\Bbb D_n$ can be joined by some basis horizontal $k$-broken line (i.e. a broken line consisting of $k$ links) $L^{\mathcal{X}_{\Bbb D_n}}_k(u,v),$ $k\leq N_{\mathcal{X}_{\Bbb D_n}},$ does not exeed $n+2.$ The examples of $\Bbb D_n$ such that $N_{\mathcal{X}_{\Bbb D_n}}=n+i,$ $i=1,2,$ were found. Here $\mathcal{X}_{\Bbb D_n}=\{X_1,\ldots,X_n\}$ is the set of left invariant basis horizontal vector fields of the Lie algebra of the group $\Bbb D_n,$ and every link of $L^{\mathcal{X}_{\Bbb D_n}}_k(u,v)$ has the form $\exp(asX_i)(w),$ $s\in[0,s_0],$ $a=const.$
Keywords: horizontal curves, broken lines, Rashevskii–Chow theorem, $2$-step Carnot groups, basis vector fields
@article{VTAMU_2024_29_147_a1,
     author = {A. V. Greshnov and R. I. Zhukov},
     title = {Optimal estimates of the number of links of basis horizontal broken lines for 2-step {Carnot} groups with horizontal distribution of corank 1},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {244--254},
     year = {2024},
     volume = {29},
     number = {147},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a1/}
}
TY  - JOUR
AU  - A. V. Greshnov
AU  - R. I. Zhukov
TI  - Optimal estimates of the number of links of basis horizontal broken lines for 2-step Carnot groups with horizontal distribution of corank 1
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2024
SP  - 244
EP  - 254
VL  - 29
IS  - 147
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a1/
LA  - ru
ID  - VTAMU_2024_29_147_a1
ER  - 
%0 Journal Article
%A A. V. Greshnov
%A R. I. Zhukov
%T Optimal estimates of the number of links of basis horizontal broken lines for 2-step Carnot groups with horizontal distribution of corank 1
%J Vestnik rossijskih universitetov. Matematika
%D 2024
%P 244-254
%V 29
%N 147
%U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a1/
%G ru
%F VTAMU_2024_29_147_a1
A. V. Greshnov; R. I. Zhukov. Optimal estimates of the number of links of basis horizontal broken lines for 2-step Carnot groups with horizontal distribution of corank 1. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 147, pp. 244-254. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a1/

[1] M. Gromov, “Carnot–Carathéodory spaces seen from within”, Sub-Riemannian Geometry, Progress in Mathematics, 144, Birkhäuser, Basel, 1996, 79–323

[2] A. Agrachev, D. Barilari, U. Boscain, A Comprehensive Introduction to sub-Riemannian Geometry, Cambridge, Cambridge University Press, 2020

[3] S. K. Vodopyanov, “Geometry of Carnot–Carathéodory spaces and differentiability of mappings”, Contemporary Mathematics, 424 (2007), 247–301 | DOI

[4] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie Groups and Potential Theory for their sub-Laplacian, Berlin–Heidelberg, Springer–Verlag, 2007

[5] P. Pansu, “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Ann. Math., 129:1 (1989), 1–60 | DOI

[6] A. Greshnov, “Optimal horizontal joinability on the Engel group”, Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica E Applicazioni, 32:3 (2021), 535–547 | DOI

[7] A. V. Greshnov, R. I. Zhukov, “Horizontal joinability in canonical 3-step Carnot groups with corank 2 horizontal distributions”, Siberian Math. J., 62:4 (2021), 598–606 | DOI

[8] A. V. Greshnov, R. I. Zhukov, “Horizontal joinability on 5-dimensional 2-step Carnot groups with a codimension 2 horizontal distribution”, Algebra and Logic, 62:2 (2023), 137–147 | DOI

[9] A. V. Greshnov, “The Agrachev–Barilari–Boscain Method and Estimates for the Number of Segments of Horizontal Broken Lines Joining Points in the Canonical Carnot Group $G_{3,3}$”, Proceedings of the Steklov Institute of Mathematics, 321:1 (2023), 97–106 | DOI | DOI

[10] Z. M. Balogh, A. Kristály, K. Sipos, “Jacobian determinant inequality on corank1 Carnot groups with applications”, Journal of Functional Analysis, 277:12 (2019), 1–36 | DOI

[11] A. Greshnov, V. Potapov, “About coincidence points theorems on 2-step Carnot groups with 1-dimensional centre equipped with Box-quasimetrics”, AIMS Mathematics, 8:3 (2023), 6191–6205 | DOI

[12] A. V. Arutyunov, A. V. Greshnov, “The theory of $(q_1,q_2)$-quasimetric spaces and coincidence points”, Doklady Mathematics, 94:1 (2016), 434–437 | DOI | DOI

[13] A. V. Arutyunov, A. V. Greshnov, “$(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points”, Izvestiya Mathematics, 82:2 (2018), 245–272 | DOI | DOI

[14] A. V. Arutyunov, A. V. Greshnov, “$(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points. A review of the results”, Fixed Point Theory, 23:2 (2022), 473–486 | DOI

[15] L. V. Ovsyannikov, Group Analysis of Differential Equations, Nauka Publ., Moscow, 1978 (In Russian)

[16] M. M. Postnikov, Lie Groups and Lie Algebras. Lectures in Geometry. Semester V, Nauka Publ., Moscow, 1982 (In Russian)