Optimal estimates of the number of links of basis horizontal broken lines for 2-step Carnot groups with horizontal distribution of corank 1
    
    
  
  
  
      
      
      
        
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 147, pp. 244-254
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For a 2-step Carnot group
$\Bbb D_n,$ $\dim\Bbb D_n=n+1,$ with horizontal distribution of corank 1, we proved that the minimal number $N_{\mathcal{X}_{\Bbb D_n}}$ such that any two points $u,v\in\Bbb D_n$ can be joined by some basis horizontal $k$-broken line (i.e. a broken line consisting of $k$ links) $L^{\mathcal{X}_{\Bbb D_n}}_k(u,v),$ $k\leq N_{\mathcal{X}_{\Bbb D_n}},$ does not exeed  $n+2.$ The examples of $\Bbb D_n$ such that $N_{\mathcal{X}_{\Bbb D_n}}=n+i,$ $i=1,2,$ were found.
Here $\mathcal{X}_{\Bbb D_n}=\{X_1,\ldots,X_n\}$ is the  set of left invariant basis horizontal vector fields of the Lie algebra of the group $\Bbb D_n,$ and every link of $L^{\mathcal{X}_{\Bbb D_n}}_k(u,v)$ has the form $\exp(asX_i)(w),$ $s\in[0,s_0],$ $a=const.$
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
horizontal curves, broken lines, Rashevskii–Chow theorem,  $2$-step Carnot groups, basis vector fields
                    
                  
                
                
                @article{VTAMU_2024_29_147_a1,
     author = {A. V. Greshnov and R. I. Zhukov},
     title = {Optimal estimates of the number of links of basis horizontal broken lines for 2-step {Carnot} groups with horizontal distribution of corank 1},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {244--254},
     publisher = {mathdoc},
     volume = {29},
     number = {147},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a1/}
}
                      
                      
                    TY - JOUR AU - A. V. Greshnov AU - R. I. Zhukov TI - Optimal estimates of the number of links of basis horizontal broken lines for 2-step Carnot groups with horizontal distribution of corank 1 JO - Vestnik rossijskih universitetov. Matematika PY - 2024 SP - 244 EP - 254 VL - 29 IS - 147 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a1/ LA - ru ID - VTAMU_2024_29_147_a1 ER -
%0 Journal Article %A A. V. Greshnov %A R. I. Zhukov %T Optimal estimates of the number of links of basis horizontal broken lines for 2-step Carnot groups with horizontal distribution of corank 1 %J Vestnik rossijskih universitetov. Matematika %D 2024 %P 244-254 %V 29 %N 147 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a1/ %G ru %F VTAMU_2024_29_147_a1
A. V. Greshnov; R. I. Zhukov. Optimal estimates of the number of links of basis horizontal broken lines for 2-step Carnot groups with horizontal distribution of corank 1. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 147, pp. 244-254. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_147_a1/
