Methods for constructing invariant cubature formulas\\ for integrals over the surface of a torus in ${\mathbb R}^3$
    
    
  
  
  
      
      
      
        
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 146, pp. 218-228
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The article considers the question of constructing cubature formulas for the surface of a torus $T$ in ${\mathbb R}^3$, invariant under the group $G$ generated by reflections of $T$ into itself. For currently known invariant cubature formulas with a degree of accuracy greater than $3$, the number of nodes significantly exceeds the minimum possible.
The article proposes invariant cubature formulas of degree $5$ and $7$ for the surface of a torus with a number of nodes close to the minimum.
Tables of values of nodes and coefficients of the constructed cubature formulas are given. The dependence of these values on the ratio of the radii of the guide and generatrix of the torus circles is studied.
For construction, the method of invariant cubature formulas is used, based on the theorem of S. L. Sobolev.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
cubature formulas, group of torus to self transformations
Mots-clés : torus, invariant polynomials
                    
                  
                
                
                Mots-clés : torus, invariant polynomials
@article{VTAMU_2024_29_146_a7,
     author = {I. M. Fedotova and M. I. Medvedeva and A. S. Katsunova},
     title = {Methods for constructing invariant cubature formulas\\ for integrals over the surface of a torus in ${\mathbb R}^3$},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {218--228},
     publisher = {mathdoc},
     volume = {29},
     number = {146},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a7/}
}
                      
                      
                    TY  - JOUR
AU  - I. M. Fedotova
AU  - M. I. Medvedeva
AU  - A. S. Katsunova
TI  - Methods for constructing invariant cubature formulas\\ for integrals over the surface of a torus in ${\mathbb R}^3$
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2024
SP  - 218
EP  - 228
VL  - 29
IS  - 146
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a7/
LA  - ru
ID  - VTAMU_2024_29_146_a7
ER  - 
                      
                      
                    %0 Journal Article
%A I. M. Fedotova
%A M. I. Medvedeva
%A A. S. Katsunova
%T Methods for constructing invariant cubature formulas\\ for integrals over the surface of a torus in ${\mathbb R}^3$
%J Vestnik rossijskih universitetov. Matematika
%D 2024
%P 218-228
%V 29
%N 146
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a7/
%G ru
%F VTAMU_2024_29_146_a7
                      
                      
                    I. M. Fedotova; M. I. Medvedeva; A. S. Katsunova. Methods for constructing invariant cubature formulas\\ for integrals over the surface of a torus in ${\mathbb R}^3$. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 146, pp. 218-228. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a7/
                  
                