Mots-clés : torus, invariant polynomials
@article{VTAMU_2024_29_146_a7,
author = {I. M. Fedotova and M. I. Medvedeva and A. S. Katsunova},
title = {Methods for constructing invariant cubature formulas
for integrals over the surface of a torus in ${\mathbb R}^3$},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {218--228},
year = {2024},
volume = {29},
number = {146},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a7/}
}
TY - JOUR
AU - I. M. Fedotova
AU - M. I. Medvedeva
AU - A. S. Katsunova
TI - Methods for constructing invariant cubature formulas
for integrals over the surface of a torus in ${\mathbb R}^3$
JO - Vestnik rossijskih universitetov. Matematika
PY - 2024
SP - 218
EP - 228
VL - 29
IS - 146
UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a7/
LA - ru
ID - VTAMU_2024_29_146_a7
ER -
%0 Journal Article
%A I. M. Fedotova
%A M. I. Medvedeva
%A A. S. Katsunova
%T Methods for constructing invariant cubature formulas
for integrals over the surface of a torus in ${\mathbb R}^3$
%J Vestnik rossijskih universitetov. Matematika
%D 2024
%P 218-228
%V 29
%N 146
%U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a7/
%G ru
%F VTAMU_2024_29_146_a7
I. M. Fedotova; M. I. Medvedeva; A. S. Katsunova. Methods for constructing invariant cubature formulas
for integrals over the surface of a torus in ${\mathbb R}^3$. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 146, pp. 218-228. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a7/
[1] S. L. Sobolev, V. L. Vaskevich, Cubature Formulas, IM SB RAN, Novosibirsk, 1996 (In Russian)
[2] I. P. Mysovskukh, Interpolational Cubature Formulas, Nauka Publ., Moscow, 1981 (In Russian) | MR
[3] M. V. Noskov, “On approximate integration over the torus surface”, Vestnik St. Petersburg University, 3:15 (1992), 100–102 (In Russian) | Zbl
[4] M. V. Noskov, H. J. Schmid, “Minimal cubature formulae of degree 3 for integrals over the surface of the torus”, Computing, 57 (1996), 213–233 | DOI | MR
[5] I. M. Fedotova, M. V. Noskov, “Minimal cubature formulas of degree 3 for a torus in ${\mathbb R}^3$”, Siberian Advances in Mathematics, 26:2 (2016), 90–98 | DOI | MR | MR | Zbl
[6] M. V. Noskov, I. M. Fedotova, “On a minimal cubature formula of degree two for a torus in ${\mathbb R}^3$”, Siberian Advances in Mathematics, 31:1 (2021), 45–52 | DOI | MR | MR | Zbl
[7] E. B. Vinberg, Symmetry of Polynomials, MCNMO, Moscow, 2001 (In Russian)
[8] M. V. Noskov, I. M. Fedotova, “On invariant cubature formulas for a torus in ${\mathbb R}^3$”, Journal of Computational Mathematics and Mathematical Physics, 43:9 (2003), 1270–1276 | MR | Zbl