Keywords: hull of a set, metric projection, measure of non-convexity, bisector of a set, support ball, Chebyshev layer, control
@article{VTAMU_2024_29_146_a6,
author = {A. A. Uspenskii and P. D. Lebedev},
title = {Alpha sets and their hulls: analytical relationships in the plane case},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {204--217},
year = {2024},
volume = {29},
number = {146},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a6/}
}
TY - JOUR AU - A. A. Uspenskii AU - P. D. Lebedev TI - Alpha sets and their hulls: analytical relationships in the plane case JO - Vestnik rossijskih universitetov. Matematika PY - 2024 SP - 204 EP - 217 VL - 29 IS - 146 UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a6/ LA - ru ID - VTAMU_2024_29_146_a6 ER -
A. A. Uspenskii; P. D. Lebedev. Alpha sets and their hulls: analytical relationships in the plane case. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 146, pp. 204-217. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a6/
[1] A. A. Uspenskii, V. N. Ushakov, A. N. Fomin, $\alpha$-sets and Their Properties, Dep. in VINITI 04.02.04, No. 543–B2004, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 2004, 62 pp.
[2] N. V. Efimov, S. B. Stechkin, “Support properties of sets in Banach spaces and Chebyshev sets”, DAN USSR, 127:2 (1959), 254–257 (In Russian) | Zbl
[3] L. P. Vlasov, “Chebyshevskie mnozhestva i nekotorye ikh obobscheniya”, Matem. zametki, 3:1 (1968), 59–69 | Zbl
[4] G. A. Ivanov, Weakly Convex Sets and Functions: Theory and Applications, Fizmatlit Publ., Moscow, 2006 (In Russian)
[5] M. V. Balashov, E. E. Ivanov, “Svoistva metricheskoi proektsii na mnozhestvo, slabo vypukloe po Vialyu, i parametrizatsiya mnogoznachnykh otobrazhenii so slabo vypuklymi znacheniyami”, Matem. zametki, 80:4 (2006), 483–489 | DOI | Zbl
[6] M. V. Balashov, “The Lipschitz property of the metric projection in the Hilbert space”, Fundam. Prikl. Mat., 22:1 (2018), 13–29 (In Russian)
[7] A. R. Alimov, I. G. Tsarkov, “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1(427) (2016), 3–84 | DOI | MR | Zbl
[8] A. A. Uspenskii, P. D. Lebedev, “On the set of limit values of local diffeomorphisms in wavefront evolution”, Proc. Steklov Inst. Math. (Suppl.), 272:1 (2011), 255–270 | DOI | MR | Zbl
[9] V. N. Ushakov, A. A. Uspenskii, “$\alpha$-sets in finite dimensional Euclidean spaces and their properties”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:1 (2016), 95–120 (In Russian) | MR | Zbl
[10] P. D. Lebedev, A. A. Uspenskii, “Elements of analytical solutions constructor in a class of time-optimal control problems with the break of curvature of a target set”, Russian Universities Reports. Mathematics, 25:132 (2020), 370–386
[11] P. D. Lebedev, A. A. Uspenskii, “Elements of analytical solutions constructor in a class of time-optimal control problems with the break of curvature of a target set”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 25:132 (2020), 370–386 (In Russian) | MR | Zbl
[12] V. N. Ushakov, A. A. Ershov, A. R. Matviichuk, “Ob otsenke stepeni nevypuklosti mnozhestv dostizhimosti upravlyaemykh sistem”, Optimalnoe upravlenie i differentsialnye igry, Sbornik statei, Trudy MIAN, 315, MIAN, M., 2021, 261–270 | DOI
[13] T. Brecker, L. Lander, Differentiable Germs and Catastrophes, Mir Publ., Moscow, 1977 (In Russian)
[14] A. A. Uspenskii, “Formuly ischisleniya negladkikh osobennostei funktsii optimalnogo rezultata v zadache bystrodeistviya”, Tr. IMM UrO RAN, 20, no. 3, 2014, 276–290 ; A. A. Uspenskii, “Calculation formulas for nonsmooth singularities of the optimal result function in a time-optimal problem”, Proc. Steklov Inst. Math., 291, suppl. 1 (2015), 239–254 | DOI | MR
[15] V. D. Sedykh, “On the topology of symmetry sets of smooth submanifolds in $\mathbb{R}^k$”, Advanced Studies in Pure Mathematics, 43, Singularity Theory and Its Applications (2006), 401–419 | DOI | MR | Zbl
[16] M. I. Karlov, “Chebyshevskii sloi mnogoobrazii v gilbertovom prostranstve”, Teoriya priblizhenii. Garmonicheskii analiz, Sbornik statei, posvyaschennyi pamyati professora Sergeya Borisovicha Stechkina, Trudy MIAN, 219, Nauka, MAIK «Nauka», M., 1997, 235–248