Alpha sets and their hulls: analytical relationships in the plane case
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 146, pp. 204-217 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The class of closed sets of two-dimensional Euclidean space that are not Chebyshev sets in common case is considered. Sets are studied from the standpoint of two well-known definitions that generalize the classical definition of a convex set. Within the framework of these definitions, analytical relationships are established between the parameters characterizing non-convex sets. A formula for calculating the function that determines the degree of non-convexity of a closed set, and a formula for calculating the radius of the support ball are found. The areas of application of the studied structures in the theory of control of dynamic systems are indicated. An illustrative example is given in which a procedure for analytical calculating the Chebyshev layer of a non-convex set with discontinuous curvature of its boundary is proposed.
Mots-clés : alpha set
Keywords: hull of a set, metric projection, measure of non-convexity, bisector of a set, support ball, Chebyshev layer, control
@article{VTAMU_2024_29_146_a6,
     author = {A. A. Uspenskii and P. D. Lebedev},
     title = {Alpha sets and their hulls: analytical relationships in the plane case},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {204--217},
     year = {2024},
     volume = {29},
     number = {146},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a6/}
}
TY  - JOUR
AU  - A. A. Uspenskii
AU  - P. D. Lebedev
TI  - Alpha sets and their hulls: analytical relationships in the plane case
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2024
SP  - 204
EP  - 217
VL  - 29
IS  - 146
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a6/
LA  - ru
ID  - VTAMU_2024_29_146_a6
ER  - 
%0 Journal Article
%A A. A. Uspenskii
%A P. D. Lebedev
%T Alpha sets and their hulls: analytical relationships in the plane case
%J Vestnik rossijskih universitetov. Matematika
%D 2024
%P 204-217
%V 29
%N 146
%U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a6/
%G ru
%F VTAMU_2024_29_146_a6
A. A. Uspenskii; P. D. Lebedev. Alpha sets and their hulls: analytical relationships in the plane case. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 146, pp. 204-217. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a6/

[1] A. A. Uspenskii, V. N. Ushakov, A. N. Fomin, $\alpha$-sets and Their Properties, Dep. in VINITI 04.02.04, No. 543–B2004, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, 2004, 62 pp.

[2] N. V. Efimov, S. B. Stechkin, “Support properties of sets in Banach spaces and Chebyshev sets”, DAN USSR, 127:2 (1959), 254–257 (In Russian) | Zbl

[3] L. P. Vlasov, “Chebyshevskie mnozhestva i nekotorye ikh obobscheniya”, Matem. zametki, 3:1 (1968), 59–69 | Zbl

[4] G. A. Ivanov, Weakly Convex Sets and Functions: Theory and Applications, Fizmatlit Publ., Moscow, 2006 (In Russian)

[5] M. V. Balashov, E. E. Ivanov, “Svoistva metricheskoi proektsii na mnozhestvo, slabo vypukloe po Vialyu, i parametrizatsiya mnogoznachnykh otobrazhenii so slabo vypuklymi znacheniyami”, Matem. zametki, 80:4 (2006), 483–489 | DOI | Zbl

[6] M. V. Balashov, “The Lipschitz property of the metric projection in the Hilbert space”, Fundam. Prikl. Mat., 22:1 (2018), 13–29 (In Russian)

[7] A. R. Alimov, I. G. Tsarkov, “Svyaznost i solnechnost v zadachakh nailuchshego i pochti nailuchshego priblizheniya”, UMN, 71:1(427) (2016), 3–84 | DOI | MR | Zbl

[8] A. A. Uspenskii, P. D. Lebedev, “On the set of limit values of local diffeomorphisms in wavefront evolution”, Proc. Steklov Inst. Math. (Suppl.), 272:1 (2011), 255–270 | DOI | MR | Zbl

[9] V. N. Ushakov, A. A. Uspenskii, “$\alpha$-sets in finite dimensional Euclidean spaces and their properties”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:1 (2016), 95–120 (In Russian) | MR | Zbl

[10] P. D. Lebedev, A. A. Uspenskii, “Elements of analytical solutions constructor in a class of time-optimal control problems with the break of curvature of a target set”, Russian Universities Reports. Mathematics, 25:132 (2020), 370–386

[11] P. D. Lebedev, A. A. Uspenskii, “Elements of analytical solutions constructor in a class of time-optimal control problems with the break of curvature of a target set”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 25:132 (2020), 370–386 (In Russian) | MR | Zbl

[12] V. N. Ushakov, A. A. Ershov, A. R. Matviichuk, “Ob otsenke stepeni nevypuklosti mnozhestv dostizhimosti upravlyaemykh sistem”, Optimalnoe upravlenie i differentsialnye igry, Sbornik statei, Trudy MIAN, 315, MIAN, M., 2021, 261–270 | DOI

[13] T. Brecker, L. Lander, Differentiable Germs and Catastrophes, Mir Publ., Moscow, 1977 (In Russian)

[14] A. A. Uspenskii, “Formuly ischisleniya negladkikh osobennostei funktsii optimalnogo rezultata v zadache bystrodeistviya”, Tr. IMM UrO RAN, 20, no. 3, 2014, 276–290 ; A. A. Uspenskii, “Calculation formulas for nonsmooth singularities of the optimal result function in a time-optimal problem”, Proc. Steklov Inst. Math., 291, suppl. 1 (2015), 239–254 | DOI | MR

[15] V. D. Sedykh, “On the topology of symmetry sets of smooth submanifolds in $\mathbb{R}^k$”, Advanced Studies in Pure Mathematics, 43, Singularity Theory and Its Applications (2006), 401–419 | DOI | MR | Zbl

[16] M. I. Karlov, “Chebyshevskii sloi mnogoobrazii v gilbertovom prostranstve”, Teoriya priblizhenii. Garmonicheskii analiz, Sbornik statei, posvyaschennyi pamyati professora Sergeya Borisovicha Stechkina, Trudy MIAN, 219, Nauka, MAIK «Nauka», M., 1997, 235–248