Mots-clés : global convergence
@article{VTAMU_2024_29_146_a2,
author = {D. I. Dorovskikh and A. F. Izmailov and E. I. Uskov},
title = {Globalizing convergence of piecewise {Newton} methods},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {149--163},
year = {2024},
volume = {29},
number = {146},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a2/}
}
TY - JOUR AU - D. I. Dorovskikh AU - A. F. Izmailov AU - E. I. Uskov TI - Globalizing convergence of piecewise Newton methods JO - Vestnik rossijskih universitetov. Matematika PY - 2024 SP - 149 EP - 163 VL - 29 IS - 146 UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a2/ LA - ru ID - VTAMU_2024_29_146_a2 ER -
D. I. Dorovskikh; A. F. Izmailov; E. I. Uskov. Globalizing convergence of piecewise Newton methods. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 146, pp. 149-163. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a2/
[1] W. W. Hager, “Lipschitz continuity for constrained processes”, SIAM J. on Control and Optimization, 17 (1979), 321–338 | DOI | MR | Zbl
[2] A. F. Izmailov, E. I. Uskov, Yan Zhibai, “The piecewise Levenberg–Marquardt method”, Advances in System Sciences and Applications, 2024 (to appear)
[3] A. Fischer, M. Herrich, A. F. Izmailov, M. V. Solodov, “A globally convergent LP-Newton method”, SIAM J. on Optimization, 26 (2016), 2012–2033 | DOI | MR | Zbl
[4] A. Fischer, A. F. Izmailov, M. Jelitte, “Newton-type methods near critical solutions of piecewise smooth nonlinear equations”, Computational Optimization and Applications, 80 (2021), 587–615 | DOI | MR | Zbl
[5] A. F. Izmailov, M. V. Solodov, Newton-Type Methods for Optimization and Variational Problems, Springer Series in Operations Research and Financial Engineering, Springer, Cham, 2014 | DOI | MR | Zbl
[6] A. F. Izmailov, M. V. Solodov, Numerical Optimization Methods, 2nd ed., revised. and additional, Fizmatlit, Moscow, 2008 (In Russian) | MR
[7] A. Fischer, A. F. Izmailov, M. V. Solodov, “Accelerating convergence of the globalized Newton method to critical solutions of nonlinear equations”, Computational Optimization and Applications, 78 (2021), 273–286 | DOI | MR | Zbl
[8] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Athena, Belmont, 1996 | MR
[9] A. N. Daryina, A. F. Izmailov, M. V. Solodov, “A class of active-set newton methods for mixed complementarity problems”, SIAM J. on Optimization, 15 (2004), 409–429 | DOI | MR | Zbl
[10] M. Frank, P. Wolfe, “An algorithm for quadratic programming”, Naval Research Logistics Quarterly, 3 (1956), 95–110 | DOI | MR
[11] C. Kanzow, N. Yamashita, M. Fukushima, “Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints”, J. of Computational and Applied Mathematics, 172 (2004), 375–397 | DOI | MR | Zbl
[12] D. P. Bertsekas, Nonlinear Programming, 2nd ed., Athena, Belmont, 1999 | MR | Zbl
[13] R. Behling, The Method and the Trajectory of Levenberg–Marquardt, PhD Thesis, IMPA — Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brazil , 2011 https://impa.br/wp-content/uploads/2017/08/tese_dout_roger_behling.pdf