@article{VTAMU_2024_29_146_a1,
author = {S. M. Dzyuba},
title = {About recurrent motions of periodic processes
in a},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {138--148},
year = {2024},
volume = {29},
number = {146},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a1/}
}
S. M. Dzyuba. About recurrent motions of periodic processes in a. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 146, pp. 138-148. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a1/
[1] V. V. Nemytskii, V. V. Stepanov, Qualitative Theory of Differential Equations, URSS Publ., Moscow, 2004 (In Russian) | MR
[2] A. P. Afanas'ev, S. M. Dzyuba, “About new properties of recurrent motions and minimal sets of dynamical systems”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 26:13 (2021), 5–14 (In Russian)
[3] A. P. Afanas'ev, S. M. Dzyuba, “On the interrelation of motions of dynamical systems”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 27:138 (2022), 136–142 (In Russian) | Zbl
[4] S. M. Dzyuba, “On the interrelation of motions of dynamical systems on compact manifolds”, Lobachevskii J. Math., 44:7 (2023), 2630–2637 | DOI | MR | Zbl
[5] A. P. Afanas'ev, S. M. Dzyuba, “The interrelation of motions of dynamical systems in a metric space”, Lobachevskii J. Math., 43:12 (2022), 3414–3419 | DOI | MR | Zbl
[6] J. K. Hale, Theory of Functional Differential Equations, Mir Publ., Moscow, 1984 (In Russian)
[7] G. D. Birkhoff, Dynamical Systems, Udm. University Publ., Izhevsk, 1999 (In Russian)
[8] L. Schwartz, Analisys, v. II, Mir Publ., Moscow, 1972 (In Russian)
[9] S. M. Dzyuba, “On the recurrent motions of dynamical systems in a semi-metric space”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 28:144 (2023), 371–382 (In Russian)