On the harmonicity of a function with a B\^{o}cher--Koebe type condition
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 146, pp. 125-137
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $B_R$ be an open ball of radius $R$ in $\mathbb{R}^n$ with the center at zero,
$B_{0,R}=B_R\backslash \{0\},$ and a function $f$ be harmonic in $B_{0,R}.$ If $f$ has zero residue
at the point $x=0,$ then the flow of its gradient through any sphere lying in $B_{0,R}$ is zero. In
this paper, the reverse phenomenon is studied for the case when only spheres of one or two fixed
radii $r_1$ и $r_2$ are allowed. A description of the class
\begin{equation*}
\mathfrak{H}_r(B_{0,R})=\bigg\{f\in C^{\infty}(B_{0,R}):
\int_{S_{r}(x)} \frac{\partial f}{\partial \mathbf{n}}\, d\omega =0\quad \forall x\in B_{R-r}\backslash
S_{r}\bigg\}
\end{equation*}
was found, where $r\in (0,R/2),$ $S_r(x)=\{y\in \mathbb{R}^n: |y-x|=r\},$ $S_r=S_r(0).$ It is
proved that if $r_1/r_2$ is not a ratio of the zeros of the Bessel function $J_{n/2}$ and
$f\in(\mathfrak{H}_{r_1}\cap\mathfrak{H}_{r_2})(B_{0,R}),$ then the function $f$ is harmonic in
$B_{0,R}$ and ${\mathrm{Res}}\, (f,0)=0.$ This result cannot be significantly improved. Namely, if
$r_1/r_2 =\alpha/\beta,$ where $J_{n/2}(\alpha)=J_{n/2}(\beta)=0,$ or $R r_1+r_2,$ then there
exists a function $f\in C^{\infty}(B_{R})$ non-harmonic in
$B_{0,R}$ and such that
\begin{equation*}
\int_{S_{r_j}(x)} \frac{\partial f}{\partial \mathbf{n}}\, d\omega =0,\quad x\in B_{R-r_j},\quad j\in \{1;2\}.
\end{equation*}
In addition, the condition $f\in C^{\infty}(B_{0,R})$ cannot be replaced, generally speaking, by
the requirement $f\in C^{s}(B_{R})$ for an arbitrary fixed $s\in \mathbb{N}.$
Keywords:
harmonic functions, Bôcher–Koebe condition, spherical harmonics
Mots-clés : Pompeiu sets
Mots-clés : Pompeiu sets
@article{VTAMU_2024_29_146_a0,
author = {N. P. Volchkova and V. V. Volchkov},
title = {On the harmonicity of a function with a {B\^{o}cher--Koebe} type condition},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {125--137},
publisher = {mathdoc},
volume = {29},
number = {146},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a0/}
}
TY - JOUR
AU - N. P. Volchkova
AU - V. V. Volchkov
TI - On the harmonicity of a function with a B\^{o}cher--Koebe type condition
JO - Vestnik rossijskih universitetov. Matematika
PY - 2024
SP - 125
EP - 137
VL - 29
IS - 146
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a0/
LA - ru
ID - VTAMU_2024_29_146_a0
ER -
%0 Journal Article
%A N. P. Volchkova
%A V. V. Volchkov
%T On the harmonicity of a function with a B\^{o}cher--Koebe type condition
%J Vestnik rossijskih universitetov. Matematika
%D 2024
%P 125-137
%V 29
%N 146
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a0/
%G ru
%F VTAMU_2024_29_146_a0
N. P. Volchkova; V. V. Volchkov. On the harmonicity of a function with a B\^{o}cher--Koebe type condition. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 146, pp. 125-137. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a0/