Mots-clés : Pompeiu sets
@article{VTAMU_2024_29_146_a0,
author = {N. P. Volchkova and V. V. Volchkov},
title = {On the harmonicity of a function with a {B\^ocher{\textendash}Koebe} type condition},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {125--137},
year = {2024},
volume = {29},
number = {146},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a0/}
}
TY - JOUR AU - N. P. Volchkova AU - V. V. Volchkov TI - On the harmonicity of a function with a Bôcher–Koebe type condition JO - Vestnik rossijskih universitetov. Matematika PY - 2024 SP - 125 EP - 137 VL - 29 IS - 146 UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a0/ LA - ru ID - VTAMU_2024_29_146_a0 ER -
N. P. Volchkova; V. V. Volchkov. On the harmonicity of a function with a Bôcher–Koebe type condition. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 146, pp. 125-137. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_146_a0/
[1] M. Bôcher, “On harmonic functions in two dimensions”, Proc. Amer. Acad. Arts and Sci., 41 (1906), 557–583
[2] P. Koebe, “Herleitung der partiellen differentialgleichungen der potentialfunktion aus deren integraleigenschaft”, Sitzungsber. Berlin. Math. Gessellschaft, 5 (1906), 39–42
[3] G. C. Evans, “Problems of potential theory”, Proc. Natl. Acad. Sci. USA, 7 (1921), 89–98 | DOI
[4] G. E. Raynor, “On the integro-differential equation of the Bôcher type in three space”, Bull. Amer. Math. Soc., 32 (1926), 654–658 | DOI | MR
[5] J. J. Gergen, “Note on a theorem of Bôcher and Koebe”, Bull. Amer. Math. Soc., 37 (1931), 591–596 | DOI | MR | Zbl
[6] S. Saks, “Note on defining properties of harmonic functions”, Bull. Amer. Math. Soc., 38 (1932), 380–382 | DOI | MR | Zbl
[7] E. F. Beckenbach, “Concerning the definition of harmonic functions”, Bull. Amer. Math. Soc., 51 (1945), 240–245 | DOI | MR | Zbl
[8] N. Kuznetsov, “Mean value properties of harmonic functions and related topics (a Survey)”, J. Math. Sci., 242 (2019), 177–199 | DOI | MR | Zbl
[9] I. Netuka, J. Veselý, “Mean value property and harmonic functions”, Classical and Modern Potential Theory and Applications. NATO ASI Series, 430 (1994), 359–398 | MR | Zbl
[10] K. A. Berenstein, D. Struppa, “Kompleksnyi analiz i uravneniya v svertkakh”, Kompleksnyi analiz – mnogie peremennye – 5, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 54, 1989, 5–111 ; C. A. Berenstein, D. C. Struppa, “Complex analysis and convolution equations”, Encyclopaedia of Mathematical Sciences, v. 54, Several complex variables $\mathrm{V}.$ Complex analysis in partial differential equations and mathematical physics, ed. G. M. Khenkin, Springer, Berlin, Heidelberg, 1993, 1–108 | MR
[11] L. Zalcman, “A bibliographic survey of the Pompeiu problem”, Approximation by Solutions of Partial Differential Equations, Nato Science Series C: Mathematical and Physical Sciences, 365, eds. B. Fuglede, M. Goldstein, W. Haussmann, W. K. Hayman, L. Rogge, Kluwer Academic Publishers, Dordrecht, 1992, 185–194 | MR
[12] L. Zalcman, “Supplementary bibliography to "A bibliographic survey of the Pompeiu problem”, Contemporary Mathematics, v. 278, Radon Transform and Tomography, eds. E. T. Quinto, L. Ehrenpreis, A. Faridani, F. Gonzalez, E. Grinberg, AMS, 2001, 69–74 | DOI | MR | Zbl
[13] V. V. Volchkov, Integral Geometry and Convolution Equations, Kluwer Academic Publishers, Dordrecht, 2003 | MR | Zbl
[14] V. V. Volchkov, Vit. V. Volchkov, Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013 | MR | Zbl
[15] L. Zalcman, “Analyticity and the Pompeiu problem”, Arch. Rat. Anal. Mech., 47 (1972), 237–254 | MR | Zbl
[16] L. Brown, B. M. Schreiber, B. A. Taylor, “Spectral synthesis and the Pompeiu problem”, Ann. Inst. Fourier, 23 (1973), 125–154 | DOI | MR | Zbl
[17] J. D. Smith, “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Proc. Cambridge Philos. Soc., 72 (1972), 403–416 | DOI | MR | Zbl
[18] C. A. Berenstein, R. Gay, “A local version of the two-circles theorem”, Israel J. Math., 55 (1986), 267–288 | DOI | MR | Zbl
[19] V. V. Volchkov, “Teoremy o dvukh radiusakh na ogranichennykh oblastyakh evklidovykh prostranstv”, Diff. uravn., 30:10 (1994), 1719–1724 | MR | Zbl
[20] V. V. Volchkov, “Okonchatelnyi variant lokalnoi teoremy o dvukh radiusakh”, Matem. sb., 186:6 (1995), 15–34 | MR | Zbl
[21] S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory, Springer, New York, 1992 | MR | Zbl
[22] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974; E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton–New Jersey, 1971 | MR | Zbl
[23] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, Nauka, M., 1974; A. Erdélyi, W. Magnus, F. Oberhettinger, F. G. Tricomi, Higher Transcendental Functions, McGraw-Hill, New York, 1953 | MR
[24] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 ; N. Ja. Vilenkin, Special Functions and the Theory of Group Representations, AMS, RI, 1968 | MR | MR | Zbl
[25] V. V. Volchkov, “Reshenie problemy nositelya dlya nekotorykh klassov funktsii”, Matem. sb., 188:9 (1997), 13–30 | DOI | MR | Zbl