A new method of estimation of moduli of initial Taylor coefficients on the class of bounded non-vanishing functions
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 145, pp. 98-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The task of obtaining the sharp estimate of the modulus of the $n$-th Taylor coefficient on the class $B$ of bounded non-vanishing functions has been reduced to the problem of estimating a functional over the class of normalized bounded functions, which in turn has been reduced to the problem of finding the constrained maximum of a non-negative objective function of $2n-3$ real arguments with constraints of the inequality type, that allows us to apply the standard numerical methods of finding constrained extrema. Analytical expressions of the first six objective functions have been obtained and their Lipschitz continuity has been proved. Based on the Lipschitz continuity of the objective function with number $n,$ a method for the sharp estimating of the modulus of the $n$-th Taylor coefficient on the class $B$ is rigorously proven. An algorithm of finding the global constrained maximum of the objective function is being discussed. The first step of this algorithm involves a brute-force search with a relatively large step. The second step of the algorithm uses a method for finding a local maximum with the initial points obtained at the previous step. The results of the numerical calculations are presented graphically and confirm the Krzyz conjecture for $n=1,\ldots,6.$ Based on these calculations, as well as on so-called asymptotic estimates, a sharp estimate of the moduli of the first six Taylor coefficients on the class $B$ is derived. The obtained results are compared with previously known estimates of the moduli of initial Taylor coefficients on the class $B$ and its subclasses $B_t,$ $t\geqslant0.$ The extremals for $B_t$ subclasses are discussed and the Krzyz hypothesis is updated for $B_t$ subclasses. A brief historical overview of research of the estimations of moduli of initial Taylor coefficients on the class $B$ is provided.
Keywords: Krzyz's conjecture, Krzyz's problem, bounded functions, subordinate functions, constrained Lipschitz optimization, brute-force search
Mots-clés : coefficient problem
@article{VTAMU_2024_29_145_a8,
     author = {D. L. Stupin},
     title = {A new method of estimation of moduli of initial {Taylor} coefficients on the class of bounded non-vanishing functions},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {98--120},
     year = {2024},
     volume = {29},
     number = {145},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a8/}
}
TY  - JOUR
AU  - D. L. Stupin
TI  - A new method of estimation of moduli of initial Taylor coefficients on the class of bounded non-vanishing functions
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2024
SP  - 98
EP  - 120
VL  - 29
IS  - 145
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a8/
LA  - ru
ID  - VTAMU_2024_29_145_a8
ER  - 
%0 Journal Article
%A D. L. Stupin
%T A new method of estimation of moduli of initial Taylor coefficients on the class of bounded non-vanishing functions
%J Vestnik rossijskih universitetov. Matematika
%D 2024
%P 98-120
%V 29
%N 145
%U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a8/
%G ru
%F VTAMU_2024_29_145_a8
D. L. Stupin. A new method of estimation of moduli of initial Taylor coefficients on the class of bounded non-vanishing functions. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 145, pp. 98-120. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a8/

[1] J. G. Krzyz, “Problem 1”, Proceedings of the Fourth Conference on Analytic Functions, Annals of Polish Mathematicians, 20:3 (1968), 314 | MR

[2] J. G. Krzyz, “Coefficient problem for bounded nonvanishing functions”, Annals of Polish Mathematicians, 70 (1968), 314

[3] N. Samaris, “A proof of Krzyz's conjecture for the fifth coefficient”, Compl. Var. Theory and Appl., 48 (2003), 48–82 | MR

[4] W. Rogosinski, “On the coefficients of subordinate functions”, Proc. London Math. Soc., 48 (1943), 48–82 | MR | Zbl

[5] D. L. Stupin, “The coefficient problem for bounded functions and its applications”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 28:143 (2023), 277–297 (In Russian)

[6] J. A. Hummel, S. Scheinberg, L. A. Zalcman, “A coefficient problem for bounded nonvanishing functions”, J. d'Analyse Mathematique, 31 (1977), 169–190 | DOI | MR | Zbl

[7] D. V. Prokhorov, J. Szynal, “Coefficient estimates for bounded nonvanishing functions”, Bull. Acad. Pol. Sci. Ser. Sci. Math., 29:5–6 (1981), 223–230 | MR | Zbl

[8] J. E. Brown, “Iterations of functions subordinate to schlicht functions”, Compl. Var., 9 (1987), 143–152 | MR | Zbl

[9] Tan Delin, “Coefficient estimates for bounded nonvanishing functions”, Chinese Ann. Math., A4 (1983), 97–104 | Zbl

[10] W. Szapiel, “A new approach to the Krzyz conjecture”, Ann. Univ. M. Curie-Sklodowska. Sec. A, 48 (1994), 169–192 | MR | Zbl

[11] R. Ermers, Coefficient Estimates for Bounded Nonvanishing Functions, Wibro Dissertatiedrukkerij, Helmond, 1990, 88 pp.

[12] D. L. Stupin, “Measure theory and moduli estimation of the first six coefficients in the Krzyz problem”, Application of Functional Analysis in Approximation Theory, Tver State University Publishing House, Tver, 2015, 36–49 (In Russian)

[13] D. L. Stupin, “The sharp estimation of the modulus of the third Taylor coefficient on the class of bounded nonvanishing functions with real coefficients”, Prospects for the development of mathematics education in the era of digital transformation, Proceedings of the III All-Russian Scientific and Practical Conference (Tver, March 24–26, 2022), Tver State University Publishing House, Tver, 2022, 205–209 (In Russian)

[14] E. Lindelöf, “Mémorie sur certaines inégalités dans la théorie des fonctions monogènes et sur quelques properiétés nouvelles de ces fonctions dans le voisinage d'un point singulier essentiel”, Acta Soc. Sci. Fenn., 35:7 (1909), 1–35

[15] J. E. Littlewood, Lectures on the Theory of Functions, Oxford University Press, 1947, 251 pp. | MR

[16] R. Peretz, “Applications of subordination theory to the class of bounded nonvanishing functions”, Compl. Var., 17:3–4 (1992), 213–222 | MR | Zbl

[17] D. Stupin, The sharp estimates of all initial taylor coefficients in the Krzyz's problem, Cornell University Library, 2011 \pagebreak, 7 pp., arXiv: 1104.3984v1

[18] D. Stupin, The Krzyz conjecture and convex univalent functions, 2023, 13 pp. https://doi.org/10.24108/preprints-3112695 | Zbl

[19] O. Töplitz, “Über die Fouriersche Entwicklung Positiver Funktionen”, Rendiconti Circ. Mat. di Palermo, 32 (1911), 191–192 | DOI

[20] S. V. Romanova, “Asymptotic estimates for linear functionals for bounded functions that do not take zero value”, Russian Math. (Iz. VUZ), 46:11 (2002), 78–80 | MR | Zbl

[21] D. V. Prokhorov, S. V. Romanova, “Local extremal problems for bounded analytic functions without zeros”, Izvestiya: Mathematics, 70:4 (2006), 841–856 | DOI | DOI | MR | Zbl

[22] P. I. Lizorkin, A Course in Differential and Integral Equations with Additional Chapters of Analysis, Nauka Publ., Moscow, 1981, 384 pp. (In Russian)

[23] M. P. Galanin, I. A. Shcheglov, Design and implementation of algorithms for three-dimensional triangulation of complex spatial areas: direct methods, Preprints of the Keldysh Institute of Physics and Mathematics (IPM), 2006, 32 pp. (In Russian)

[24] M. J. D. Powell, “An efficient method for finding the minimum of a function of several variables without calculating derivatives”, Computer Journal, 7:2 (1964), 155–-162 | DOI | MR | Zbl

[25] D. L. Stupin, “The problem of coefficients for functions mapping a circle into a generalized circle and the Caratheodory–Feuer problem”, Application of Functional Analysis in Approximation Theory, Tver State University Publishing House, Tver, 2012, 45–74 (In Russian)

[26] D. L. Stupin, V. G. Sheretov, “A Proof of the local Krzyz conjecture”, Vestnik TvGU. Seriya: Prikladnaya matematika = Vestnik of Tver State University. Series: Applied Mathematics, 2005, no. 6(12), 122–125 (In Russian)

[27] D. L. Stupin, “A Proof of the Local Subordination Principle and the Local Fairness of the Krzyz Conjecture”, Application of Functional Analysis in Approximation Theory, Tver State University Publishing House, Tver, 2008, 70–72 (In Russian)

[28] V. I. Levin, W. Fenchel, E. Reissner, “Lösing der Aufgabe 163”, Jahresber. DM, 44:2 (1934), 80–83

[29] D. L. Stupin, A new proof of the Krzyz conjecture for $n=3$, 2022, 13 pp. https://doi.org/10.24108/preprints-3112533

[30] D. V. Prokhorov, “Coefficients of Holomorphic Functions”, Journal of Mathematical Sciences, 106:6 (2001), 3518–3544, Springer, Tver | DOI | MR

[31] P. N. Pronin, Sufficient Conditions of Univalence of Various Operators and Extremal Problems on a Class of Bounded Functions, Saratov State University, Saratov, 1983, 105 pp.