On the solution of a mixed problem for the equation of vibrations of a moving viscoelastic web
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 145, pp. 86-97 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model initial boundary value problem of small transverse oscillations of a viscoelastic moving web with a hinged condition of fastening is considered. The vibrations of such a canvas are described by a linear differential equation of the 5th order in a spatial variable with constant coefficients. It is worth noting that the equation includes mixed derivatives of the desired function both with respect to the spatial variable and with respect to time. The paper describes a technique for constructing a solution in the form of a functional series based on a system of basis functions. To solve the initial-boundary value problem under the additional condition of conservation of energy, a condition is obtained that ensures the uniqueness of the solution. A special class of functions for which the uniqueness theorem holds is explicitly described.
Keywords: linear partial differential equation, initial boundary value problem, vibrations of a viscoelastic web, exact solutions of a boundary value problem, uniqueness of the solution
@article{VTAMU_2024_29_145_a7,
     author = {A. M. Romanenkov},
     title = {On the solution of a mixed problem for the equation of vibrations of a moving viscoelastic web},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {86--97},
     year = {2024},
     volume = {29},
     number = {145},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a7/}
}
TY  - JOUR
AU  - A. M. Romanenkov
TI  - On the solution of a mixed problem for the equation of vibrations of a moving viscoelastic web
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2024
SP  - 86
EP  - 97
VL  - 29
IS  - 145
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a7/
LA  - ru
ID  - VTAMU_2024_29_145_a7
ER  - 
%0 Journal Article
%A A. M. Romanenkov
%T On the solution of a mixed problem for the equation of vibrations of a moving viscoelastic web
%J Vestnik rossijskih universitetov. Matematika
%D 2024
%P 86-97
%V 29
%N 145
%U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a7/
%G ru
%F VTAMU_2024_29_145_a7
A. M. Romanenkov. On the solution of a mixed problem for the equation of vibrations of a moving viscoelastic web. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 145, pp. 86-97. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a7/

[1] T. Saksa, N. Banichuk, J. Jeronen, M. Kurki, T. Tuovinen, “Dynamic analysis for axially moving viscoelastic panels”, International Journal of Solids and Structures, 49:23–24 (2012), 3355–3366 | DOI

[2] T. Saksa, J. Jeronen, T. Tuovinen, “Stability of moving viscoelastic panels interacting with surrounding fluid. Rakenteiden Mekaniikka”, Journal of Structural Mechanics, 45:3 (2012), 88–103

[3] T. Saksa, J. Jeronen, N. Banichuk, M. Kurki, “On travelling web stability including material viscoelasticity and surrounding air”, Advances in Pulp and Paper Research, 15th Fundamental Research Symposium, Cambridge, 2013, 449–468

[4] N. Banichuk, J. Jeronen, P. Neittaanmäki, T. Saksa, T. Tuovinen, Mechanics of Moving Materials, v. 207, Solid Mechanics and its Applications, Springer, Switzerland, 2014, 253 pp. | DOI | MR | Zbl

[5] H. Ding, Y.-Q. Tang, L.-Q. Chen, “Frequencies of transverse vibration of an axially moving viscoelastic beam”, Journal of Vibration and Control, 23:20 (2017), 3504–3514 | DOI | MR

[6] Y. Wang, X. Cao, T. Jing, J. Wu, “Dynamic characteristics and stability of axially moving viscoelastic plate with piezoelectric layer”, Journal of Low Frequency Noise, Vibration and Active Control, 33:3 (2014), 341–355 | DOI

[7] Y. Wang, X. Cao, T. Jing, J. Wu, “Transverse vibrations of an axially accelerating viscoelastic string with geometric nonlinearity”, Journal of Engineering Mathematics, 48 (2004), 171–182 | DOI

[8] L.-Q. Chen, “Nonlinear Vibrations of Axially Moving Beams”, Nonlinear Dynamics, v. 7, ed. T. Evans, IntechOpen Limited, United Kingdom, 2010

[9] B. Kh. Eshmatov, Kh. Eshmatov, D. A. Khodzhaev, “Nonlinear flutter of viscoelastic rectangular plate cylindrical panels from composite material with local masses”, Applied Mechanics and Engineering Physics Sciences, 54:4 (2013), 74–85 (In Russian) | MR | Zbl

[10] B. A. Khudayarov, N. G. Bandurin, “Nonlinear flutter of viscoelastic orthotropic cylindrical panels”, Mathematical Models, 17:10 (2005), 79–86 (In Russian) | Zbl

[11] Abdikarimov Rustamkhan Alimkhanovich, Khodjaev Dadakhan Akmarkhanovich, “Computer modeling of tasks in dynamics of viscoelastic thin-walled elements in structures of variable thickness”, Magazine of Civil Engineering, 49:5 (2014), 83–94 (In Russian) | DOI

[12] A. M. Romanenkov, “On solutions of the equation of small transverse oscillations of a moving web”, Vestnik St. Petersburg University, Mathematics, 55 (2022), 235–242 | DOI | MR | Zbl