The best approximation of analytic in a unit circle
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 145, pp. 65-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper studies the issues of the best approximation of analytical functions in the Bergman weight space $\mathscr{B}_{2,\mu}.$ In this space, for best approximations of functions analytic in the circle by algebraic complex polynomials we obtain the exact inequalities by means of generalized modules of continuity of higher order derivatives $\Omega_{m}(z^{r}f^{(r)},t),$ $m\in\mathbb{N},$ $r\in\mathbb{Z}.$ For classes of functions analytic in the unit circle defined by the characteristic $\Omega_{m}(z^{r}f^{(r)},t),$ and the majorant $\Phi,$ the exact values of some $n$-widths are calculated. When proving the main results of this work, we use methods for solving extremal problems in normalized spaces of functions analytic in the circle, N. P. Korneichuk’s method for estimating upper bounds for the best approximations of classes of functions by a subspace of fixed dimension, and a method for estimating from below the $n$-widths of function classes in various Banach spaces.
Keywords: best polynomial approximation, generalized modulus of continuity of high order, Bergman weight space, diameters
@article{VTAMU_2024_29_145_a5,
     author = {M. R. Langarshoev},
     title = {The best approximation of analytic in a unit circle},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {65--76},
     year = {2024},
     volume = {29},
     number = {145},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a5/}
}
TY  - JOUR
AU  - M. R. Langarshoev
TI  - The best approximation of analytic in a unit circle
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2024
SP  - 65
EP  - 76
VL  - 29
IS  - 145
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a5/
LA  - ru
ID  - VTAMU_2024_29_145_a5
ER  - 
%0 Journal Article
%A M. R. Langarshoev
%T The best approximation of analytic in a unit circle
%J Vestnik rossijskih universitetov. Matematika
%D 2024
%P 65-76
%V 29
%N 145
%U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a5/
%G ru
%F VTAMU_2024_29_145_a5
M. R. Langarshoev. The best approximation of analytic in a unit circle. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 145, pp. 65-76. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a5/

[1] A. Kolmogoroff, “Uber die beste Annaherug von Funktionen einer gegebenen Funktionen klasse”, Annals of Mathematics, 37:1 (1936), 107–111 | DOI | MR

[2] K. I. Babenko, “Best approximations to a class of analytic functions”, Izv. Akad. Nauk SSSR Ser. Mat., 22:5 (1958), 631–640 (In Russian) | Zbl

[3] V. M. Tikhomirov, “Diameters of sets in function spaces and the theory of best approximations”, Russian Math. Surveys, 15:3 (1960), 75–111 | DOI | MR | Zbl

[4] L. V. Taikov, “On the best approximation in the mean of certain classes of analytic functions”, Math. Notes, 1:2 (1967), 104–109 | DOI | MR | Zbl

[5] M. Z. Dveyrin, “Widths and $\varepsilon$-entropy of classes of functions that are analytic in the unit circle of functions”, Function theory, functional analysis and their applications, 23 (1975), 32–46 (In Russian) | MR

[6] S. B. Vakarchuk, “Exact values of widths of classes of analytic functions on the disk and best linear approximation methods”, Math. Notes, 72:5 (2002), 615–619 | DOI | DOI | MR | Zbl

[7] M. Sh. Shabozov, G. A. Yusupov, “Best approximation and widths of some classes of analytic functions”, Doklady Mathematics, 65:1 (2002), 111–113 | MR | Zbl

[8] S. B. Vakarchuk, “Diameters of certain classses of functions analytic in the unit disc. I”, Ukrainian Math. J., 42:7 (1990), 769–778 | DOI | MR | MR | Zbl

[9] S. B. Vakarchuk, “Best linear methods of approximation and widths of classes of analytic functions in a disk”, Math. Notes, 57:1 (1995), 21–27 | DOI | MR

[10] M. Sh. Shabozov, M. R. Langarshoev, “Approximation of some classes of analytic functions in the space $B_{p}$”, Vestnik KhSU, 1:1 (1999), 45–50 (In Russian)

[11] M. R. Langarshoev, “Best approximation and the value of the diameters of some classes of functions in Bergman space”, Reports of the Academy of Sciences of the Republic of Tajikistan, 48:3–4 (2005), 12–17 (In Russian)

[12] M. Sh. Shabozov, “On the best simultaneous approximation in the Bergman space $B_2$”, Math. Notes, 114:3 (2023), 377–386 | DOI | DOI | MR | Zbl

[13] M. Sh. Shabozov, O. Sh. Shabozov, “On the best approximation of some classes of analytic functions in weighted Bergman spaces”, Doklady Mathematics, 75:1 (2007), 97–100 | DOI | MR | Zbl

[14] S. B. Vakarchuk, “Estimates of the values of $n$-widths of classes of analytic functions in the weight spaces $H_{2,\gamma}(D)$”, Math. Notes, 108:6 (2020), 775–790 | DOI | DOI | MR | Zbl

[15] M. Sh. Shabozov, M. S. Saidusainov, “Mean-squared approximation of some classes of complex variable functions by Fourier series in the weighted Bergman space $B_{2,\gamma}$”, Chebyshevskii sb., 23:1 (2022), 167–182 (In Russian) | DOI | MR | Zbl

[16] M. R. Langarshoev, “The best approximation and the values of the widths of some classes of analytical functions in the weighted Bergman space $B_{2,\gamma}$”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 28:142 (2023), 182–192 (In Russian)

[17] K. V. Runovskii, “On approximation by families of linear polynomial operators in $L_{p}$-spaces, $0

1$”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 441–459 | MR | Zbl

[18] S. B. Vakarchuk, V. I. Zabutnaya, “A sharp inequality of Jackson–Stechkin type in $L_2$ and the widths of functional classes”, Math. Notes, 86:3 (2009), 306–313 | DOI | DOI | MR | Zbl

[19] M. Abramovica, I. Stigana, Special Functions Reference with Formulas, Graphs and Tables, Nauka Publ., Moscow, 1979 (In Russian)

[20] L. V. Taikov, “Inequalities containing best approximations and the modulus of continuity of functions in $L_2$”, Math. Notes, 20:3 (1976), 797–800 | DOI | MR | MR | Zbl

[21] V. M. Tikhomirov, Some Questions of Approximation Theory, Moscow State University Publ., Moscow, 1976 (In Russian)

[22] M. R. Langarshoev, “The Exact Inequalities of Jackson–Stechkin Type and the Width Values for Some Classes of Functions in $L_2$ Space”, Model. Anal. Inform. Sist., 20:5 (2013), 90–105 (In Russian)