On well-posedness of a mathematical model of evoked activity in the primary visual cortex
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 145, pp. 43-50
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a mathematical model that formalizes the macro- and meso-level dynamics of electrical potentials in the primary visual cortex of subjects, which corresponds to the presentation of visual stimuli to them. The mathematical framework is based on a two-layer neural field model, represented by a system of integro-differential equations, where the deep layer of the neural field models electrical activity that does not depend directly on the spatial orientation of the visual stimuli, whereas the activity of the superficial layer is sensitive to spatially oriented stimuli. The experimental design of presenting a series of visual stimuli is formalised in the present study in terms of an impulse control problem for the aforementioned two-layer neural field model. We propose a special metric space for construction of a unique solution to the control problem under standard assumptions for mathematical neurobiology regarding the functions involved in the modeling equations. We formulate sufficient conditions for continuous dependence of the solutions on the impulse control.
Keywords: integro-differential equations, nonlinear integral equations, bi-laminar neural field model, impulsive control, well-posedness
@article{VTAMU_2024_29_145_a3,
     author = {E. O. Burlakov and V. M. Verkhlyutov and I. N. Malkov},
     title = {On well-posedness of a mathematical model of evoked activity in the primary visual cortex},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {43--50},
     year = {2024},
     volume = {29},
     number = {145},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a3/}
}
TY  - JOUR
AU  - E. O. Burlakov
AU  - V. M. Verkhlyutov
AU  - I. N. Malkov
TI  - On well-posedness of a mathematical model of evoked activity in the primary visual cortex
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2024
SP  - 43
EP  - 50
VL  - 29
IS  - 145
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a3/
LA  - ru
ID  - VTAMU_2024_29_145_a3
ER  - 
%0 Journal Article
%A E. O. Burlakov
%A V. M. Verkhlyutov
%A I. N. Malkov
%T On well-posedness of a mathematical model of evoked activity in the primary visual cortex
%J Vestnik rossijskih universitetov. Matematika
%D 2024
%P 43-50
%V 29
%N 145
%U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a3/
%G ru
%F VTAMU_2024_29_145_a3
E. O. Burlakov; V. M. Verkhlyutov; I. N. Malkov. On well-posedness of a mathematical model of evoked activity in the primary visual cortex. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 145, pp. 43-50. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a3/

[1] D. H. Hubel, T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex”, The Journal of Physiology, 160:1 (1962), 106–154 | DOI

[2] D. Y. Ts'o, R. D. Frostig, E. E. Lieke, A. Grinvald, “Functional organization of primate visual cortex revealed by high resolution optical imaging”, Science, 249:4967 (1990), 417–420 | DOI

[3] T. D. Fehervari, Y. Okazaki, H. Sawai, T. Yagi, “In vivo voltage-sensitive dye study of lateral spreading of cortical activity in mouse primary visual cortex induced by a current impulse”, PLoS ONE, 10:7 (2015), e0133853 | DOI

[4] Y. Liang, J. Liang, C. Song, M. Liu, T. Knopfel, P. Gong, C. Zhou, “Complexity of cortical wave patterns of the wake mouse cortex”, Nature Communications, 14:1434 (2023), 1434(2023) | DOI

[5] P. C. Bressloff, J. D. Cowan, “An amplitude equation approach to contextual effects in visual cortex”, Neural Computation, 14:3 (2002), 493–525 | DOI | Zbl

[6] P. C. Bressloff, “Spatiotemporal dynamics of continuum neural fields”, Journal of Physics A: Mathematical and Theoretical, 45:3 (2012), 033001 | DOI | MR | Zbl

[7] E. Burlakov, I. Malkov, “On Bi-Laminar Neural Field Models of Electrical Activity in the Primary Visual Cortex”, Advances in Systems Science and Applications, 23:3 (2023), 177–190

[8] E. O. Burlakov, E. S. Zhukovskiy, “On well-posedness of neural field equations with impulsive control”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 21:1 (2016), 16–27 | MR