@article{VTAMU_2024_29_145_a1,
author = {D. N. Barotov and R. N. Barotov},
title = {Construction of smooth convex extensions of {Boolean} functions},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {20--28},
year = {2024},
volume = {29},
number = {145},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a1/}
}
TY - JOUR AU - D. N. Barotov AU - R. N. Barotov TI - Construction of smooth convex extensions of Boolean functions JO - Vestnik rossijskih universitetov. Matematika PY - 2024 SP - 20 EP - 28 VL - 29 IS - 145 UR - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a1/ LA - ru ID - VTAMU_2024_29_145_a1 ER -
D. N. Barotov; R. N. Barotov. Construction of smooth convex extensions of Boolean functions. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 145, pp. 20-28. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a1/
[1] A. H. Abdel-Gawad, A. F. Atiya, N. M. Darwish, “Solution of systems of Boolean equations via the integer domain”, Information Sciences, 180:2 (2010), 288–300 | DOI | MR | Zbl
[2] D. N. Barotov, R. N. Barotov, “Polylinear transformation method for solving systems of logical equations”, Mathematics, 10:6 (2022), 918 | DOI
[3] D. N. Barotov, “Target function without local minimum for systems of logical equations with a unique solution”, Mathematics, 10:12 (2022) | DOI
[4] J. A. Armario, “Boolean functions and permanents of Sylvester Hadamard matrices”, Mathematics, 9:2 (2021), 177 | DOI | MR
[5] L. G. Valiant, “The complexity of computing the permanent”, Theoretical Computer Science, 8:2 (1979), 189–201 | DOI | MR | Zbl
[6] R. T. Faizullin, V. I. Dul'keit, Yu. Yu. Ogorodnikov, “Hybrid method for the approximate solution of the 3-satisfiability problem associated with the factorization problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 19, no. 2 (2013), 285–294 (In Russian) | MR
[7] J. Gu, “Global optimization for satisfiability (SAT) problem”, IEEE Transactions on Knowledge and DataEngineering, 6:3 (1994), 361–381 | DOI
[8] J. Gu, Q. Gu, D. Du, “On optimizing the satisfiability (SAT) problem”, Journal of Computer Science and Technology, 14:1 (1999), 1–17 | DOI | MR
[9] A. I. Pakhomchik, V. V. Voloshinov, V. M. Vinokur, G. B. Lesovik, “Converting of Boolean expression to linear equations, inequalities and QUBO penalties for cryptanalysis”, Algorithms, 15:2 (2022), 33 | DOI
[10] D. N. Barotov, R. N. Barotov, V. Soloviev, V. Feklin, D. Muzafarov, T. Ergashboev, Kh. Egamov, “The development of suitable inequalities and their application to systems of logical equations”, Mathematics, 10:11 (2022), 1851 | DOI
[11] D. N. Barotov, R. N. Barotov, “Polylinear continuations of some discrete functions and an algorithm for finding them”, Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie), 24:1 (2023), 10–23 | DOI
[12] D. N. Barotov, A. Osipov, S. Korchagin, E. Pleshakova, D. Muzafarov, R. Barotov, D. Serdechnyy, “Transformation method for solving system of Boolean algebraic equations”, Mathematics, 9:24 (2021), 3299 | DOI
[13] G. Owen, “Multilinear extensions of games”, Management Science, 18:(5-part-2) (1972), 64–79 | DOI | MR | Zbl
[14] D. M. Wittmann, J. Krumsiek, J. Saez-Rodriguez, D. A. Lauffenburger, S. Klamt, F. J. Theis, “Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling”, BMC Systems Biology, 3 (2009), 98(2009) | DOI
[15] J. L. W. V. Jensen, “Sur les fonctions convexes et les inegalites entre les valeurs moyennes”, Acta Mathematica, 30 (1906), 175–193 | DOI | MR