Linear integral operators in spaces of continuous and essentially bounded vector functions
Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 145, pp. 5-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The well-established criterion for the action and boundedness of a linear integral operator $K$ from the space $L_\infty$ of essentially bounded functions to the space $C$ of functions continuous on a compact set is extended to the case of functions taking values in Banach spaces. The study further shows that if the operator $K$ is active and bounded in the space $C,$ it is also active and bounded in the space $L_\infty,$ with the norms of $K$ in $C$ and $L_\infty$ being identical. A precise expression for the general value of the norm of the operator $K$ in these spaces, expressed in terms of its operator kernel, is provided. Addicionally, an example of an integral operator (for scalar functions) is given, active and bounded in each of the spaces $C$ and $L_\infty,$ but not acting from $L_\infty$ into $C.$ Convenient conditions for checking the boundedness of the operator $K$ in $C$ and $L_\infty$ are discussed. In the case of the Banach space $Y$ of the image function values of $K$ being finite-dimensional, these conditions are both necessary and sufficient. In the case of infinite-dimensionality of $Y,$ they are sufficient but not necessary (as proven). For $\dim Y<\infty,$ unimprovable estimates for the norm of the operator $K$ are provided in terms of a $1$-absolutely summing constant $\pi_1(Y),$ determined by the geometric properties of the norm in $Y.$ Specifically, it is defined as the supremum over finite sets of nonzero elements of $Y$ of the ratio of the sum of the norms of these elements to the supremum (over functionals with unit norm) of the sums of absolute values of the functional on these elements.
Keywords: Banach space, linear integral operator, norm of linear operator, $1$-absolutely summing constant
@article{VTAMU_2024_29_145_a0,
     author = {M. J. Alves and E. V. Alves and Zh. Munembe and I. V. Nepomnyaschih},
     title = {Linear integral operators in spaces of continuous and essentially bounded vector functions},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {5--19},
     year = {2024},
     volume = {29},
     number = {145},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a0/}
}
TY  - JOUR
AU  - M. J. Alves
AU  - E. V. Alves
AU  - Zh. Munembe
AU  - I. V. Nepomnyaschih
TI  - Linear integral operators in spaces of continuous and essentially bounded vector functions
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2024
SP  - 5
EP  - 19
VL  - 29
IS  - 145
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a0/
LA  - en
ID  - VTAMU_2024_29_145_a0
ER  - 
%0 Journal Article
%A M. J. Alves
%A E. V. Alves
%A Zh. Munembe
%A I. V. Nepomnyaschih
%T Linear integral operators in spaces of continuous and essentially bounded vector functions
%J Vestnik rossijskih universitetov. Matematika
%D 2024
%P 5-19
%V 29
%N 145
%U http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a0/
%G en
%F VTAMU_2024_29_145_a0
M. J. Alves; E. V. Alves; Zh. Munembe; I. V. Nepomnyaschih. Linear integral operators in spaces of continuous and essentially bounded vector functions. Vestnik rossijskih universitetov. Matematika, Tome 29 (2024) no. 145, pp. 5-19. http://geodesic.mathdoc.fr/item/VTAMU_2024_29_145_a0/

[1] A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, v. I, II, Dover Publications, Mineola–New York, 1957, 1961 | MR

[2] L. V. Kantorovich, G. P. Akilov, Functional Analysis, 2nd ed., Pergamon Press Ltd. “Nauka” Publishers, Oxford–New York–Toronto–Sydney–Paris–Frankfurt, 1982 | MR | Zbl

[3] P. P. Zabrejko, A. I. Koshelev, M. A. Krasnosel'skii, S. G. Mikhlin, L. S. Rakovshchik, V. J. Stecenko, Integral Equations, Noordhoff, Leyden, 1975 | Zbl

[4] M. J. Alves, E. V. Alves, J. P. S. Munembe, Y. V. Nepomnyshchikh, “Linear and nonlinear integral functionals on the space of continuous vector functions”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 28:142 (2023), 111–124 (In Russian) | DOI

[5] J. Diestel, J. J. Uhl, Vector Measures, Math. Surveys, v. 15, AMS, Providence, 1977 | MR | Zbl

[6] I. V. Shragin, “Superposition measurability”, Izv. Vyssh. Uchebn. Zaved. Mat., 1975, no. 1, 82–92 (In Russian) | MR | Zbl

[7] Y. V. Nepomnyashchikh, Properties of the Uryson Operator in Spaces of Uniformly Continuous and Almost Periodic Functions, Dep VINITI, no. 2787–B92, PSU, Perm, 1992 (In Russian)

[8] Y. V. Nepomnyashchikh, T. A. Sambo, “One example in the theory of linear integral operator”, Actual Problems of Mechanics, Mathematics, Computer Science, Proceedings of the All-Russian Scientific and Practical Conference with International Participation, Book of Abstracts (Perm, 2010), Perm State University, Perm, 2010, 282 (In Russian) | MR

[9] N. N. Vakhania, V. I. Tarieladze, S. A. Chobanyan, Probability Distributions on Banach Spaces, Mathematics and its Applications, 14, Springer Dordrecht, Holland, 1987 | MR

[10] Y. Gordon, “On $p$-absolutely summing constants of Banach spaces”, Isr. J. Math., 7:2 (1969), 151–163 | DOI | MR | Zbl

[11] M. G. Snobar, “On $p$-absolutely summing constants”, Theory of functions, functional analysis and their applications, 16 (1972), 39–41 | MR

[12] M. I. Kadets, “The geometry of normed spaces”, J. Sov. Math., 7 (1977), 953–973 | DOI | MR