On continuous and Lipschitz selections of multivalued mappings given by systems of inequalities
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 144, pp. 447-468 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a multivalued mapping of the following form $$ a(x)=\{ y \in Y \,|\,\, f_i(x,y) \leq 0, \ i\in I\}, \ \ x \in X, $$ where $X \subset \mathbb{R}^m$ is compact; $Y \subset \mathbb{R}^n$ is convex compact; the gradients $f'_{iy}(x,y),$ $i \in I,$ of the functions $f_i(x,y)$ along $y$ satisfy the Lipschitz condition on $Y$; $I$ is a finite set of indices. Using the linearization method, existence theorems for continuous and Lipschitz selectors passing through any point of the graph of the multivalued mapping $a$ are proved. Both local and global theorems are obtained. Examples are given that confirm the significance of the assumptions made, as well as examples illustrating the application of the obtained statements to optimization problems.
Keywords: Lipschitz condition, multivalued mapping, continuous and Lipschitz selections, weakly convex set, proximally smooth set
@article{VTAMU_2023_28_144_a7,
     author = {R. A. Khachatryan},
     title = {On continuous and {Lipschitz} selections of multivalued mappings given by systems of inequalities},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {447--468},
     year = {2023},
     volume = {28},
     number = {144},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a7/}
}
TY  - JOUR
AU  - R. A. Khachatryan
TI  - On continuous and Lipschitz selections of multivalued mappings given by systems of inequalities
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2023
SP  - 447
EP  - 468
VL  - 28
IS  - 144
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a7/
LA  - ru
ID  - VTAMU_2023_28_144_a7
ER  - 
%0 Journal Article
%A R. A. Khachatryan
%T On continuous and Lipschitz selections of multivalued mappings given by systems of inequalities
%J Vestnik rossijskih universitetov. Matematika
%D 2023
%P 447-468
%V 28
%N 144
%U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a7/
%G ru
%F VTAMU_2023_28_144_a7
R. A. Khachatryan. On continuous and Lipschitz selections of multivalued mappings given by systems of inequalities. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 144, pp. 447-468. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a7/

[1] R. T. Rockafellar, J. B. Wets, Variation Analysis, Springer, New York, 2009

[2] E. Michael, “Continous Selection 1”, Ann. Math., 1956, no. 63, 361–381 | DOI | MR

[3] M. V. Balashov, G. E. Ivanov, “Weakly convex and proksimally smooth sets in Banach space”, Izwestiya: Mathematics, 73:3 (2009), 23–66 (in Russian) | DOI | MR | Zbl

[4] G. E. Ivanov, Weakly convex functions and sets: theory and applications, Fizmatlit Publ., Moscow, 2006 (In Russian)

[5] F. H. Clarke, R. J. Stern, P. R. Wolenski, “Proximal smoothness and lowee-$C^2$ property”, Convex Anal., 2:1 (1085), 231–259 | MR

[6] V. V. Ostapenko, “On one condition of almost convexity”, Ukrainian Math. Journal, 35:2 (1983), 163–172 (in Russian)

[7] R. A. Khachatryan, “On continuous selections of a multivalued mapping with almost convex values”, Izv. NAN Armenia. Mathematics, 54:1 (2019), 60–75 (in Russian) | MR | Zbl

[8] B. N. Pshenichny, Linearization Method, Nauka Publ., Moscow, 1983 (In Russian) | MR

[9] R. A. Khachatryan, “On derivatives with respect to the direction of selections of multivalued mappings”, Izv. NAN Armenia. Mathematics, 54:3 (2016), 64–82 (in Russian)

[10] B. N. Pshenichny, Convex Analysis and Extremal Problems, Nauka Publ., Moscow, 1980 (In Russian) | MR

[11] Yu. G. Borisovich, B. D. Gelman, A. D. Myshkis, V. V. Obukhovsky, Inrodiction to the Theory of Multivalued Mappins and Differential Inclusions, URSS Publ., Moscow, 2005, 216 pp. (In Russian) | MR

[12] Yu. E. Nesterov, Convex optimization methods, ICCMMO Publ., Moscow, 2010 (In Russian)

[13] V. V. Ostapenko, E. V. Ostapenko, S. N. Amigalieva, “Approximate methods for solving differntial gaims with random nois”, System Researsh and information Technologies, 2005, no. 4, 65–74 (in Russian)

[14] B. Sh. Mordukhovish, Approximation Methods in Optimization and Control Problems, Nauka Publ., Moscow, 1988 | MR

[15] S. Adly, F. Nacry, L. Thibault, “Discontinous sweeping process with prox-regular sets”, ESAIM: Contol, Optimization and Calculus of Variations, 23 (2017), 1293–1329 | DOI | MR | Zbl

[16] R. A. Khachatryan, “On the existence of continuous selections of a multivalued mapping related to the problem of minimizing a functional”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 27:139 (2022), 284–299 (in Russian) | Zbl