Boundary layer phenomenon in a first-order algebraic-differential equation
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 144, pp. 436-446 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy problem for the first-order algebraic differential equation is considered \begin{equation*} A\frac{du}{dt}=(B+\varepsilon C+\varepsilon^2 D)u(t,\varepsilon), \end{equation*} \begin{equation*} u(t_0,\varepsilon)=u^0(\varepsilon)\in E_1, \end{equation*} where $A,B,C,D$ are closed linear operators acting from a Banach space $E_1$ to a Banach space $E_2$ with domains everywhere dense in $E_1,$ $u^0$ is a holomorphic function at the point $\varepsilon=0,$ $\varepsilon$ is a small parameter, $t\in[t_0;t_{max}].$ Such equations describe, in particular, the processes of filtration and moisture transfer, transverse vibrations of plates, vibrations in DNA molecules, phenomena in electromechanical systems, etc. The operator $A$ is the Fredholm operator with zero index. The aim of the work is to study the boundary layer phenomenon caused by the presence of a small parameter. The necessary information and statements are given. A bifurcation equation is obtained. Two cases are considered: a) boundary layer functions of one type, b) boundary layer functions of two types. Newton's diagram is used to solve the bifurcation equation. In both, the conditions under which boundary layer phenomenon arises are obtained — these are the conditions for the regularity of degeneracy. Case a) is illustrated by an example of the Cauchy problem with certain operator coefficients acting in the space $\mathbb{R}^4.$
Keywords: first-order algebraic-differential equation, small parameter, Fredholm operator, boundary layer phenomenon, regularity conditions for degeneracy
Mots-clés : bifurcation equation
@article{VTAMU_2023_28_144_a6,
     author = {V. I. Uskov},
     title = {Boundary layer phenomenon in a first-order algebraic-differential equation},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {436--446},
     year = {2023},
     volume = {28},
     number = {144},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a6/}
}
TY  - JOUR
AU  - V. I. Uskov
TI  - Boundary layer phenomenon in a first-order algebraic-differential equation
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2023
SP  - 436
EP  - 446
VL  - 28
IS  - 144
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a6/
LA  - ru
ID  - VTAMU_2023_28_144_a6
ER  - 
%0 Journal Article
%A V. I. Uskov
%T Boundary layer phenomenon in a first-order algebraic-differential equation
%J Vestnik rossijskih universitetov. Matematika
%D 2023
%P 436-446
%V 28
%N 144
%U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a6/
%G ru
%F VTAMU_2023_28_144_a6
V. I. Uskov. Boundary layer phenomenon in a first-order algebraic-differential equation. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 144, pp. 436-446. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a6/

[1] P. L. Christiansen, P. S. Lomdahl, V. Muto, “On a Toda lattice model with a transversal degree of freedom”, Nonlinearity, 4:2 (1991), 477–501 | DOI | MR | Zbl

[2] Nguyen Hak Diep, V. F. Chistyakov, “On modeling using partial differential-algebraic equations”, Bulletin of the South Ural State University. Series: Mathematical modelling, programming and computer software, 6:1 (2013), 98–111 (In Russian)

[3] V. I. Uskov, “Study of rigidity of a first-order algebro-differential system with perturbation in the right-hand side”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 26:34 (2021), 172–181 (In Russian) | Zbl

[4] S. P. Zubova, “The role of perturbations in the Cauchy problem for equations with a Fredholm operator multiplying the derivative”, Doklady Mathematics, 89 (2014), 72–75 | DOI | DOI | MR | Zbl

[5] A. B. Vasilyeva, V. F. Butuzov, Asymptotic Expansions of Solutions to Singularly Perturbed Equations, Nauka Publ., Moscow, 1973 (In Russian) | MR

[6] S. M. Nikolsky, “Linear equations in normed linear spaces”, Izv. Akad. Nauk SSSR Ser. Mat., 7:3 (1943), 147–166 (In Russian) | Zbl

[7] S. P. Zubova, V. I. Uskov, “Solution of the Cauchy Problem for a First-Order Equation with a Small Parameter in a Banach Space. The Regular Case”, Mathematical Notes, 103:3 (2018), 395–404 | DOI | DOI | MR | Zbl

[8] S. G. Krein, Linear Differential Equations in Banach Space, Nauka Publ., Moscow, 1971 (In Russian)

[9] N. G. Chebotarev, Theory of Algebraic Functions, Librokom Publ., Moscow, 2009 (In Russian)