Mots-clés : bifurcation equation
@article{VTAMU_2023_28_144_a6,
author = {V. I. Uskov},
title = {Boundary layer phenomenon in a first-order algebraic-differential equation},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {436--446},
year = {2023},
volume = {28},
number = {144},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a6/}
}
V. I. Uskov. Boundary layer phenomenon in a first-order algebraic-differential equation. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 144, pp. 436-446. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a6/
[1] P. L. Christiansen, P. S. Lomdahl, V. Muto, “On a Toda lattice model with a transversal degree of freedom”, Nonlinearity, 4:2 (1991), 477–501 | DOI | MR | Zbl
[2] Nguyen Hak Diep, V. F. Chistyakov, “On modeling using partial differential-algebraic equations”, Bulletin of the South Ural State University. Series: Mathematical modelling, programming and computer software, 6:1 (2013), 98–111 (In Russian)
[3] V. I. Uskov, “Study of rigidity of a first-order algebro-differential system with perturbation in the right-hand side”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 26:34 (2021), 172–181 (In Russian) | Zbl
[4] S. P. Zubova, “The role of perturbations in the Cauchy problem for equations with a Fredholm operator multiplying the derivative”, Doklady Mathematics, 89 (2014), 72–75 | DOI | DOI | MR | Zbl
[5] A. B. Vasilyeva, V. F. Butuzov, Asymptotic Expansions of Solutions to Singularly Perturbed Equations, Nauka Publ., Moscow, 1973 (In Russian) | MR
[6] S. M. Nikolsky, “Linear equations in normed linear spaces”, Izv. Akad. Nauk SSSR Ser. Mat., 7:3 (1943), 147–166 (In Russian) | Zbl
[7] S. P. Zubova, V. I. Uskov, “Solution of the Cauchy Problem for a First-Order Equation with a Small Parameter in a Banach Space. The Regular Case”, Mathematical Notes, 103:3 (2018), 395–404 | DOI | DOI | MR | Zbl
[8] S. G. Krein, Linear Differential Equations in Banach Space, Nauka Publ., Moscow, 1971 (In Russian)
[9] N. G. Chebotarev, Theory of Algebraic Functions, Librokom Publ., Moscow, 2009 (In Russian)