Mots-clés : Lagrange multiplier rule
@article{VTAMU_2023_28_144_a5,
author = {M. I. Sumin},
title = {On the role of {Lagrange} multipliers and duality in ill-posed problems for constrained extremum.},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {414--435},
year = {2023},
volume = {28},
number = {144},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a5/}
}
TY - JOUR AU - M. I. Sumin TI - On the role of Lagrange multipliers and duality in ill-posed problems for constrained extremum. JO - Vestnik rossijskih universitetov. Matematika PY - 2023 SP - 414 EP - 435 VL - 28 IS - 144 UR - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a5/ LA - ru ID - VTAMU_2023_28_144_a5 ER -
M. I. Sumin. On the role of Lagrange multipliers and duality in ill-posed problems for constrained extremum.. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 144, pp. 414-435. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a5/
[1] A. N. Tikhonov, “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Doklady AN SSSR, 151:3 (1963), 501–504 | Zbl
[2] A. N. Tikhonov, “O regulyarizatsii nekorrektno postavlennykh zadach”, Doklady AN SSSR, 153:1 (1963), 49–52 | Zbl
[3] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1974; A. N. Tikhonov, V. Ya. Arsenin, Solutions of Ill-Posed Problems, Winston; Halsted Press, Washington; New York, 1977 | MR | Zbl
[4] Nekorrektnye zadachi estestvoznaniya, eds. A. N. Tikhonov, A. V. Goncharskii, Izd-vo MGU, M., 1987; Il-posed Problems in the Natural Science, Advances in Science and Technology in the USSR Mathematics and Mechanics, eds. A. N. Tikhonov, A. V. Goncharskii, Mir Publ., Moscow, 1989
[5] V. K. Ivanov, V. V. Vasin, V. P. Tanana, Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978; V. K. Ivanov, V. V. Vasin, V. P. Tanana, Theory of Linear Ill-Posed Problems and its Applications, v. 36, Inverse and Ill-Posed Problems, Walter de Gruyter, Utrecht, 2002 | MR
[6] A. N. Tikhonov, A. V. Goncharskii, V. V. Stepanov, A. G. Yagola, Regularizing Algorithms And Apriori Information, Nauka Publ., Moscow, 1983 (In Russian) | MR
[7] A. B. Bakushinskii, A. V. Goncharskii, Incorrect Tasks. Numerical Methods and Applications, Publishing House Moscow University, Moscow, 1989 (In Russian)
[8] F. P. Vasil’ev, Optimization Methods: in 2 books, MCCME, Moscow, 2011 (In Russian)
[9] M. I. Sumin, Incorrect Problems and Methods for Solving Them. Materials for Lectures for Students Senior Students, Publishing House of Nizhny Novgorod State University, Nizhny Novgorod, 2009 (In Russian)
[10] M. I. Sumin, “Lagrange principle and its regularization as a theoretical basis of stable solving optimal control and inverse problems”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 26:134 (2021), 151–171 (In Russian) | Zbl
[11] M. I. Sumin, “On ill-posed problems, extremals of the Tikhonov functional and the regularized Lagrange principles”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 27:137 (2022), 58–79 (In Russian) | Zbl
[12] M. I. Sumin, “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl
[13] A. N. Tikhonov, “Ob ustoichivosti zadachi optimizatsii funktsionalov”, Zhurn. vychisl. matem. i matem. fiz., 6:4 (1966), 631–634
[14] M. I. Sumin, “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zhurn. vychisl. matem. i matem. fiz., 51:9 (2011), 1594–1615 | MR | Zbl
[15] M. I. Sumin, “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zhurn. vychisl. matem. i matem. fiz., 54:1 (2014), 25–49 | DOI | MR | Zbl
[16] M. I. Sumin, “Why regularization of Lagrange principle and Pontryagin maximum principle is needed and what it gives”, Vestnik Tambovskogo universiteta. Seriya: estestvennye i tekhnicheskie nauki = Tambov University Reports. Series: Natural and Technical Sciences, 23:124 (2018), 757–772 (In Russian)
[17] M. I. Sumin, “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 25, no. 1, 2019, 279–296 (In Russian)
[18] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 ; V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal Control, Plenum Press, New York, 1987 | MR | MR
[19] M. I. Sumin, “Nondifferential Kuhn–Tucker theorems in constrained extremum problems via subdifferentials of nonsmooth analysis”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 25:131 (2020), 307–330 (In Russian)
[20] Zh. -P. Oben, Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 ; J. -P. Aubin, L’Analyse non Linéaire et ses Motivations Économiques, Elsevier Masson, Paris–New York, 1984 | MR | MR
[21] Dzh. Varga, Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977; J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972 | MR | Zbl
[22] M. I. Sumin, “On regularization of the classical optimality conditions in convex optimal control problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 2, 2020, 252–269 (In Russian)