Mots-clés : interrelation of motions
@article{VTAMU_2023_28_144_a1,
author = {S. M. Dzyuba},
title = {On recurrent motions of dynamical systems in a semi-metric},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {371--382},
year = {2023},
volume = {28},
number = {144},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a1/}
}
S. M. Dzyuba. On recurrent motions of dynamical systems in a semi-metric. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 144, pp. 371-382. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a1/
[1] V. V. Nemytskii, V. V. Stepanov, Qualitative Theory of Differential Equations, URSS Publ., Moscow, 2004 (In Russian) | MR
[2] G. D. Birkhoff, Dynamical Systems, Udm. University Publ., Izhevsk, 1999 (In Russian)
[3] A. P. Afanas'ev, S. M. Dzyuba, “About new properties of recurrent motions and minimal sets of dynamical systems”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 26:13 (2021), 5–14 (In Russian)
[4] A. P. Afanas'ev, S. M. Dzyuba, “On the interrelation of motions of dynamical systems”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 27:138 (2022), 136–142 (In Russian) | Zbl
[5] S. M. Dzyuba, “On the interrelation of motions of dynamical systems on compact manifolds”, Lobachevskii J. Math., 44:7 (2023), 2630–2637 | DOI | MR
[6] A. P. Afanas'ev, S. M. Dzyuba, “The interrelation of motions of dynamical systems in a metric space”, Lobachevskii J. Math., 43:12 (2022), 3414–3419 | DOI | MR | Zbl
[7] L. S. Pontryagin, Topological Groups, URSS Publ., Moscow, 2009 (In Russian) | MR
[8] L. Schwartz, Analisys, v. II, Mir Publ., Moscow, 1972 (In Russian)