On recurrent motions of dynamical systems in a semi-metric
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 144, pp. 371-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

\noindent Abstract. The present paper is devoted to studying the properties of recurrent motions of a dynamical system $g^t$ defined in a Hausdorff semi-metric space $\Gamma.$ \noindent Based on the definitions of a minimal set and recurrent motion introduced by G. Birkhoff at the beginning of the last century, a new sufficient condition for the recurrence of motions of the system $g^t$ in $\Gamma$ is obtained. This condition establishes a new property of motions, which rigidly connects arbitrary and recurrent motions. Based on this property, it is shown that if in the space $\Gamma$ positively (negatively) semi-trajectory of some motion is relatively sequentially compact, then the $\omega$-limit ($\alpha$-limit) set of this motion is a sequentially compact minimal set. \noindent As one of the applications of the results obtained, the behavior of motions of the dynamical system $g^t$ given on a topological manifold $V$ is studied. This study made it possible to significantly simplify the classical concept of interrelation of motions on $V$ which was actually stated by G. Birkhoff in 1922 and has not changed since then.
Keywords: dynamical systems, semi-metric space, recurrent motions, topological manifold
Mots-clés : interrelation of motions
@article{VTAMU_2023_28_144_a1,
     author = {S. M. Dzyuba},
     title = {On recurrent motions of dynamical systems in a semi-metric},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {371--382},
     year = {2023},
     volume = {28},
     number = {144},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a1/}
}
TY  - JOUR
AU  - S. M. Dzyuba
TI  - On recurrent motions of dynamical systems in a semi-metric
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2023
SP  - 371
EP  - 382
VL  - 28
IS  - 144
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a1/
LA  - ru
ID  - VTAMU_2023_28_144_a1
ER  - 
%0 Journal Article
%A S. M. Dzyuba
%T On recurrent motions of dynamical systems in a semi-metric
%J Vestnik rossijskih universitetov. Matematika
%D 2023
%P 371-382
%V 28
%N 144
%U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a1/
%G ru
%F VTAMU_2023_28_144_a1
S. M. Dzyuba. On recurrent motions of dynamical systems in a semi-metric. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 144, pp. 371-382. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a1/

[1] V. V. Nemytskii, V. V. Stepanov, Qualitative Theory of Differential Equations, URSS Publ., Moscow, 2004 (In Russian) | MR

[2] G. D. Birkhoff, Dynamical Systems, Udm. University Publ., Izhevsk, 1999 (In Russian)

[3] A. P. Afanas'ev, S. M. Dzyuba, “About new properties of recurrent motions and minimal sets of dynamical systems”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 26:13 (2021), 5–14 (In Russian)

[4] A. P. Afanas'ev, S. M. Dzyuba, “On the interrelation of motions of dynamical systems”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 27:138 (2022), 136–142 (In Russian) | Zbl

[5] S. M. Dzyuba, “On the interrelation of motions of dynamical systems on compact manifolds”, Lobachevskii J. Math., 44:7 (2023), 2630–2637 | DOI | MR

[6] A. P. Afanas'ev, S. M. Dzyuba, “The interrelation of motions of dynamical systems in a metric space”, Lobachevskii J. Math., 43:12 (2022), 3414–3419 | DOI | MR | Zbl

[7] L. S. Pontryagin, Topological Groups, URSS Publ., Moscow, 2009 (In Russian) | MR

[8] L. Schwartz, Analisys, v. II, Mir Publ., Moscow, 1972 (In Russian)