On recurrent motions of dynamical systems in a semi-metric
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 144, pp. 371-382

Voir la notice de l'article provenant de la source Math-Net.Ru

\noindent Abstract. The present paper is devoted to studying the properties of recurrent motions of a dynamical system $g^t$ defined in a Hausdorff semi-metric space $\Gamma.$ \noindent Based on the definitions of a minimal set and recurrent motion introduced by G. Birkhoff at the beginning of the last century, a new sufficient condition for the recurrence of motions of the system $g^t$ in $\Gamma$ is obtained. This condition establishes a new property of motions, which rigidly connects arbitrary and recurrent motions. Based on this property, it is shown that if in the space $\Gamma$ positively (negatively) semi-trajectory of some motion is relatively sequentially compact, then the $\omega$-limit ($\alpha$-limit) set of this motion is a sequentially compact minimal set. \noindent As one of the applications of the results obtained, the behavior of motions of the dynamical system $g^t$ given on a topological manifold $V$ is studied. This study made it possible to significantly simplify the classical concept of interrelation of motions on $V$ which was actually stated by G. Birkhoff in 1922 and has not changed since then.
Keywords: dynamical systems, semi-metric space, recurrent motions, topological manifold
Mots-clés : interrelation of motions
@article{VTAMU_2023_28_144_a1,
     author = {S. M. Dzyuba},
     title = {On recurrent motions of dynamical systems in a semi-metric},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {371--382},
     publisher = {mathdoc},
     volume = {28},
     number = {144},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a1/}
}
TY  - JOUR
AU  - S. M. Dzyuba
TI  - On recurrent motions of dynamical systems in a semi-metric
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2023
SP  - 371
EP  - 382
VL  - 28
IS  - 144
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a1/
LA  - ru
ID  - VTAMU_2023_28_144_a1
ER  - 
%0 Journal Article
%A S. M. Dzyuba
%T On recurrent motions of dynamical systems in a semi-metric
%J Vestnik rossijskih universitetov. Matematika
%D 2023
%P 371-382
%V 28
%N 144
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a1/
%G ru
%F VTAMU_2023_28_144_a1
S. M. Dzyuba. On recurrent motions of dynamical systems in a semi-metric. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 144, pp. 371-382. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_144_a1/