Estimates of the phase trajectories of controlled systems with multi-valued impulses
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 143, pp. 326-334
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a controlled system for the differential equation $$ \dot{x}(t)=f(t,x(t),u(t), \xi), \ \ t \in [a,b] , \ \ x(a)=\mathrm{x},$$ where the parameter $\xi$ is an element of some given metric space, the control $u$ satisfies the constraint $$ u(t)\in U(t,x(t), \xi), \ \ t \in [a,b].$$ It is assumed that at each given moment of time $t_k\in (a,b)$ a solution $x:[a,b]\to \mathbb{R}^n$ (a phase trajectory) suffers discontinuity, the magnitude of which belongs to a non-empty compact set $I_k( x(t_k))\subset \mathbb{R}^n,$ and is an absolutely continuous function on intervals $(t_{k-1},t_k]$. The control function is assumed to be measurable. A theorem on estimating the distance from a given piece-wise absolutely continuous function $y:[a,b]\to \mathbb{R}^n$ to the set of phase trajectories for all initial values from a neighborhood of a vector $x_0$ and for all parameters from a neighborhood of a point $\xi_0$ is proven. It is assumed that for the given initial value $\mathrm{x}=x_0$ of the solution and for the value $\xi=\xi_0$ of the parameter, the set of phase trajectories is a priori limited. The proven theorem allows, by selecting the function $y$, to obtain an approximate solution of the controlled system, as well as an estimate of the error of such solution.
Keywords:
differential inclusion, Cauchy problem, multi-valued impulses, phase trajectory.
@article{VTAMU_2023_28_143_a8,
author = {O. V. Filippova},
title = {Estimates of the phase trajectories of controlled systems with multi-valued impulses},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {326--334},
publisher = {mathdoc},
volume = {28},
number = {143},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a8/}
}
TY - JOUR AU - O. V. Filippova TI - Estimates of the phase trajectories of controlled systems with multi-valued impulses JO - Vestnik rossijskih universitetov. Matematika PY - 2023 SP - 326 EP - 334 VL - 28 IS - 143 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a8/ LA - ru ID - VTAMU_2023_28_143_a8 ER -
%0 Journal Article %A O. V. Filippova %T Estimates of the phase trajectories of controlled systems with multi-valued impulses %J Vestnik rossijskih universitetov. Matematika %D 2023 %P 326-334 %V 28 %N 143 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a8/ %G ru %F VTAMU_2023_28_143_a8
O. V. Filippova. Estimates of the phase trajectories of controlled systems with multi-valued impulses. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 143, pp. 326-334. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a8/