Estimates of the phase trajectories of controlled systems with multi-valued impulses
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 143, pp. 326-334

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a controlled system for the differential equation $$ \dot{x}(t)=f(t,x(t),u(t), \xi), \ \ t \in [a,b] , \ \ x(a)=\mathrm{x},$$ where the parameter $\xi$ is an element of some given metric space, the control $u$ satisfies the constraint $$ u(t)\in U(t,x(t), \xi), \ \ t \in [a,b].$$ It is assumed that at each given moment of time $t_k\in (a,b)$ a solution $x:[a,b]\to \mathbb{R}^n$ (a phase trajectory) suffers discontinuity, the magnitude of which belongs to a non-empty compact set $I_k( x(t_k))\subset \mathbb{R}^n,$ and is an absolutely continuous function on intervals $(t_{k-1},t_k]$. The control function is assumed to be measurable. A theorem on estimating the distance from a given piece-wise absolutely continuous function $y:[a,b]\to \mathbb{R}^n$ to the set of phase trajectories for all initial values from a neighborhood of a vector $x_0$ and for all parameters from a neighborhood of a point $\xi_0$ is proven. It is assumed that for the given initial value $\mathrm{x}=x_0$ of the solution and for the value $\xi=\xi_0$ of the parameter, the set of phase trajectories is a priori limited. The proven theorem allows, by selecting the function $y$, to obtain an approximate solution of the controlled system, as well as an estimate of the error of such solution.
Keywords: differential inclusion, Cauchy problem, multi-valued impulses, phase trajectory.
@article{VTAMU_2023_28_143_a8,
     author = {O. V. Filippova},
     title = {Estimates of the phase trajectories of controlled systems with multi-valued impulses},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {326--334},
     publisher = {mathdoc},
     volume = {28},
     number = {143},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a8/}
}
TY  - JOUR
AU  - O. V. Filippova
TI  - Estimates of the phase trajectories of controlled systems with multi-valued impulses
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2023
SP  - 326
EP  - 334
VL  - 28
IS  - 143
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a8/
LA  - ru
ID  - VTAMU_2023_28_143_a8
ER  - 
%0 Journal Article
%A O. V. Filippova
%T Estimates of the phase trajectories of controlled systems with multi-valued impulses
%J Vestnik rossijskih universitetov. Matematika
%D 2023
%P 326-334
%V 28
%N 143
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a8/
%G ru
%F VTAMU_2023_28_143_a8
O. V. Filippova. Estimates of the phase trajectories of controlled systems with multi-valued impulses. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 143, pp. 326-334. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a8/