@article{VTAMU_2023_28_143_a7,
author = {V. I. Sumin and M. I. Sumin},
title = {Regularization of classical optimality conditions},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {298--325},
year = {2023},
volume = {28},
number = {143},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a7/}
}
V. I. Sumin; M. I. Sumin. Regularization of classical optimality conditions. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 143, pp. 298-325. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a7/
[1] V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimalnoe upravlenie, Nauka, M., 1979 ; V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin, Optimal control, Plenum Press, New York, 1987 | MR | MR
[2] E. R. Avakov, G. G. Magaril-Ilyaev, V. M. Tikhomirov, “O printsipe Lagranzha v zadachakh na ekstremum pri nalichii ogranichenii”, Uspekhi matem. nauk, 68:3(411) (2013), 5–38 | DOI | MR | Zbl
[3] A. V. Arutyunov, G. G. Magaril-Il`yaev, V. M. Tikhomirov, Pontryagin's Maximum Principle. Proof and Applications, Faktorial Press Publ., Moscow, 2006 (In Russian)
[4] R. V. Gamkrelidze, “Istoriya otkrytiya printsipa maksimuma Pontryagina”, Optimalnoe upravlenie i differentsialnye uravneniya, Sbornik statei. K 110-letiyu so dnya rozhdeniya akademika Lva Semenovicha Pontryagina, Trudy MIAN, 304, MIAN, M., 2019, 7–14 | DOI
[5] Nekorrektnye zadachi estestvoznaniya, eds. A. N. Tikhonov, A. V. Goncharskii, Izd-vo MGU, M., 1987; Ill posed Problems in the Natural Science, Advances in science and technology in the USSR . Mathematics and mechanics series, eds. A. N. Tikhonov, A. V. Goncharskii, Mir Publ., Moscow, 1989 | MR
[6] F. P. Vasil’ev, Optimization Methods: In 2 books, MCCME, Moscow, 2011 (In Russian)
[7] M. I. Sumin, “Regularized Lagrange principle and Pontryagin maximum principle in optimal control and in inverse problems”, Trudy Inst. Mat. Mekh. UrO RAN, 25, no. 1, 2019, 279–296 (In Russian)
[8] M. I. Sumin, “Lagrange principle and its regularization as a theoretical basis of stable solving optimal control and inverse problems”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 26:134 (2021), 151–171 \ (In Russian) | Zbl
[9] M. I. Sumin, “On ill-posed problems, extremals of the Tikhonov functional and the regularized Lagrange principles”, Vestnik rossiyskikh universitetov. Matematika = Russian Universities Reports. Mathematics, 27:137 (2022), 58–79 (In Russian) | Zbl
[10] V. I. Sumin, M. I. Sumin, “Regularized classical optimality conditions in iterative form for convex optimization problems for distributed Volterra-type systems”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Komp`yuternye nauki, 31:2 (2021), 265–-284 (In Russian) | MR | Zbl
[11] V. I. Sumin, M. I. Sumin, “Regulyarizatsiya klassicheskikh uslovii optimalnosti v zadachakh optimalnogo upravleniya lineinymi raspredelennymi sistemami volterrova tipa”, Zhurn. vychisl. matem. i matem. fiz., 62:1 (2022), 45–70 | DOI | Zbl
[12] V. I. Sumin, Functional Volterra Equations in the Theory of Optimal Control of Distributed Systems, Izd-vo Nizhegorodskogo Gosuniversiteta, Nizhnii Novgorod, 1992 (In Russian)
[13] V. I. Sumin, A. V. Chernov, “Operatory v prostranstvakh izmerimykh funktsii: volterrovost i kvazinilpotentnost”, Differents. ur-niya, 34:10 (1998), 1402–1411 | MR | Zbl
[14] I. Ts. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967; I. Ts. Gokhberg, M. G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, American Mathematical Society, Providence, 1970 | MR | Zbl
[15] V. I. Sumin, “Funktsionalno-operatornye volterrovy uravneniya v teorii optimalnogo upravleniya raspredelennymi sistemami”, Dokl. AN SSSR, 305:5 (1989), 1056–1059 | Zbl
[16] V. I. Sumin, “Controlled Volterra functional equations and the contraction mapping principle”, Trudy Inst. Mat. Mekh. UrO RAN, 25:1 (2019), 262–278 (In Russian) | MR
[17] M. I. Sumin, “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zhurn. vychisl. matem. i matem. fiz., 51:9 (2011), 1594–1615 | MR | Zbl
[18] M. I. Sumin, “Ustoichivoe sekventsialnoe vypukloe programmirovanie v gilbertovom prostranstve i ego prilozhenie k resheniyu neustoichivykh zadach”, Zhurn. vychisl. matem. i matem. fiz., 54:1 (2014), 25–49 | DOI | MR | Zbl
[19] Dzh. Varga, Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977; J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972 | MR | Zbl
[20] M. I. Sumin, Incorrect Problems and Methods for Solving Them. Materials for Lectures for Students Senior Students, Publishing House of Nizhny Novgorod State University, Nizhny Novgorod, 2009 (In Russian)
[21] M. I. Sumin, “Regulyarizatsiya v lineino-vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zhurn. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl
[22] M. I. Sumin, “On regularization of the classical optimality conditions in convex optimal control problems”, Trudy Inst. Mat. Mekh. UrO RAN, 26:2 (2020), 252–269 (In Russian) | MR
[23] A. B. Bakushinsky, A. V. Goncharsky, Incorrect Tasks. Numerical Methods and Applications, Moscow University Publishing House, Moscow, 1989 (In Russian)
[24] A. V. Dmitruk, Convex Analysis. Elementary Introductory Course: Textbook, Publishing department of the Faculty of Computer Science and Technology of Moscow State University; MAX Press, Moscow, 2012 (In Russian)
[25] K. Jorgens, “An asymptotic expansion in the theory of neutron transport”, Comm. Pure Appl. Math., 11:2 (1958), 219–242 | DOI | MR | Zbl
[26] S. F. Morozov, “Non-stationary integro-differential transport equation”, Izv. Vyssh. Uchebn. Zaved., Mat., 1969, no. 1, 26–31 (In Russian) | Zbl
[27] Yu. A. Kuznetsov, S. F. Morozov, “Correctness of the mixed problem statement for the nonstationary transport equation”, Differ. Uravn., 8:9 (1972), 1639–1648 (In Russian) | Zbl