Mots-clés : coefficient problem, coefficient bodies
@article{VTAMU_2023_28_143_a6,
author = {D. L. Stupin},
title = {The coefficient problem for bounded functions and its applications},
journal = {Vestnik rossijskih universitetov. Matematika},
pages = {277--297},
year = {2023},
volume = {28},
number = {143},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a6/}
}
D. L. Stupin. The coefficient problem for bounded functions and its applications. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 143, pp. 277-297. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a6/
[1] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, 2-e izd., Nauka, M., 1966 ; G. M. Golusin, Geometric Theory of Functions of a Complex Variable, v. I, II, Amer. Math. Soc., 1969 | MR | MR
[2] I. Schur, “Über potenzreihen, die in Innern des Einheitskrises Beschränkt Sind”, Reine Angew. Math., 147 (1917), 205–232 | DOI | MR
[3] C. Carathéodory, “Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen”, Mathematische Annalen, 64 (1907), 95–115 | DOI | MR
[4] C. Carathéodory, “Über die Variabilitätsbereich des Fourierschen Konstanten von Positiv Harmonischen Funktion”, Rendiconti Circ. Mat. di Palermo, 32 (1911), 193–217 | DOI
[5] D. L. Stupin, “The problem of coefficients for functions mapping a circle into a generalized circle and the Caratheodory–Feuer problem”, Application of Functional Analysis in Approximation Theory, Tver State University Publishing House, Tver, 2012, 45–74 (In Russian)
[6] R. A. Kortram, “A simple proof for schur's theorem”, Proc. American Math. Soc., 129:11 (2001), 3211–3212 | DOI | MR | Zbl
[7] V. V. Savchuk, M. V. Savchuk, “Characterization of the Schur class in terms of the coefficients of a series on the Laguerre basis”, Dopov. Nac. akad. nauk Ukr. Math., 129:11 (2020), 3211–3212 | MR
[8] W. Rogosinski, “On the coefficients of subordinate functions”, Proc. London Math. Soc., 48 (1943), 48–82 | MR | Zbl
[9] J. G. Krzyz, “Problem 1”, Proceedings of the Fourth Conference on Analytic Functions, Annals of Polish Mathematicians, 20 (1968), 314 | MR
[10] J. E. Brown, “Iterations of functions subordinate to schlicht functions”, Compl. Var., 9 (1987), 143–152 | MR | Zbl
[11] C. Carathéodory, L. Fejer, “Über den Zusammenhang der extremen von harmonischen Funktionen mit ihren Koeffizienten und über den Picard–Landau'schen Satz”, Rendiconti Circ. Mat. di Palermo, 32 (1911), 218–239 | DOI
[12] D. L. Stupin, New proof of Krzyz's conjecture for $n=3$, Preprints.ru, 2022, 13 pp. | DOI