Ekeland variational principle for quasimetric spaces
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 143, pp. 268-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study real-valued functions defined on quasimetric spaces. A generalization of Ekeland's variational principle and a similar statement from the article [S. Cobzas, “Completeness in quasi-metric spaces and Ekeland Variational Principle”, Topology and its Applications, vol. 158, no. 8, pp. 1073–1084, 2011] is obtained for them. The modification of the variational principle given here is applicable, in particular, to a wide class of functions unbounded from below. The result obtained is applied to the study the minima of functions defined on quasimetric spaces. A Caristi-type condition is formulated for conjugate-complete quasimetric spaces. It is shown that the proposed Caristi-type condition is a sufficient condition for the existence of a minimum for lower semicontinuous functions acting in conjugate-complete quasimetric spaces.
Keywords: Ekeland variational principle, functions unbounded from below.
Mots-clés : quasimetric spaces
@article{VTAMU_2023_28_143_a5,
     author = {R. Sengupta},
     title = {Ekeland variational principle for quasimetric spaces},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {268--276},
     year = {2023},
     volume = {28},
     number = {143},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a5/}
}
TY  - JOUR
AU  - R. Sengupta
TI  - Ekeland variational principle for quasimetric spaces
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2023
SP  - 268
EP  - 276
VL  - 28
IS  - 143
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a5/
LA  - ru
ID  - VTAMU_2023_28_143_a5
ER  - 
%0 Journal Article
%A R. Sengupta
%T Ekeland variational principle for quasimetric spaces
%J Vestnik rossijskih universitetov. Matematika
%D 2023
%P 268-276
%V 28
%N 143
%U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a5/
%G ru
%F VTAMU_2023_28_143_a5
R. Sengupta. Ekeland variational principle for quasimetric spaces. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 143, pp. 268-276. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a5/

[1] A. B. Arutyunov, A. B. Greshnov, “Teoriya $(q_1,q_2)$-kvazimetricheskikh prostranstv i tochki sovpadeniya”, Dokl. RAN., 469:5 (2016), 527–531 | DOI | Zbl

[2] M. A. Krasnosel'skiy, P. P. Zabreiko, Geometric Methods of Nonlinear Analysis, Nauka Publ., Moscow, 1975 (In Russian)

[3] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, 5-e izd., Nauka, M., 1981 ; A. N. Kolmogorov, S. V. Fomin, Elements of the Theory of Functions and Functional Analysis, v. I, II, Dover Publications, Mineola, New York, 1957, 1961 | MR | MR

[4] J. P. Aubin, I. Ekeland, Applied Nonlinear Analysis, J. Wiley Sons, N.Y., 1984 | MR | Zbl

[5] A. V. Arutyunov, B. D. Gel'man, E. S. Zhukovskiy, S. E. Zhukovskiy, “Caristi-like condition. Existence of solutions to equations and minima of functions in metric spaces”, Fixed Point Theory, 20:1 (2019), 31–58 | DOI | MR | Zbl

[6] R. Vinter, Optimal Control, Birkhauser, Boston, 2000 | MR | Zbl

[7] A. V. Arutyunov, V. A. de Oliveira, F. L. Pereira, E. S. Zhukovskiy, S. E. Zhukovskiy, “On the solvability of implicit differential inclusions”, Applicable Analysis, 94:1 (2015), 129–143 | DOI | MR | Zbl

[8] A. V. Arutyunov, N. T. Tynyanskii, “The maximum principle in a problem with phase constraints”, Soviet Journal of Computer and System Sciences, 23 (1985), 28–35 | MR

[9] J. Caristi, “Fixed point theorems for mappings satisfying inwardness conditions”, Trans. Amer. Math. Soc., 215 (1976), 241–251 | DOI | MR | Zbl

[10] A. Granas, J. Dugundji, Fixed Point Theory, Springer–Verlag, N.Y., 2003 | MR | Zbl

[11] M. A. Khamsi, “Remarks on Caristi's fixed point theorem”, Nonlinear Analysis, Theory, Methods and Applications, 71:1-2 (2009), 227–231 | DOI | MR | Zbl

[12] A. V. Arutyunov, E. R. Avakov, S. E. Zhukovskiy, “Stability theorems for estimating the distance to a set of coincidence points”, SIAM Journal on Optimization, 25:2 (2015), 807–828 | DOI | MR | Zbl

[13] E. S. Zhukovskii, “Ob uporyadochenno nakryvayuschikh otobrazheniyakh i integralnykh neravenstvakh tipa Chaplygina”, Algebra i analiz, 30:1 (2018), 96–127 ; E. S. Zhukovskiy, “On order covering maps in ordered spaces and Chaplygin-type inequalities”, St. Petersburg Mathematical Journal, 30:1 (2019), 73–94 | DOI | MR

[14] A. V. Arutyunov, S. E. Zhukovskiy, N. G. Pavlova, “Equilibrium price as a coincidence point of two mappings”, Comput. Math. Math. Phys., 53:2 (2013), 158–169 | DOI | MR | Zbl

[15] J. M. Borwein, D. Preiss, “A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions”, Trans. Amer. Math. Soc., 303:2 (1987), 517–527 | DOI | MR | Zbl

[16] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Coincidence points principle for mappings in partially ordered spaces”, Topology and its Applications, 179:1 (2015), 13–33 | DOI | MR | Zbl

[17] A. V. Arutyunov, S. E. Zhukovskiy, “Variational Principles in Nonlinear Analysis and Their Generalization”, Mathematical Notes, 103:5-6 (2018), 1014–1019 | DOI | MR | Zbl

[18] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, “Caristi-Like Condition and the Existence of Minima of Mappings in Partially Ordered Spaces”, Journal of Optimization Theory and Applications, 180:1 (2019), 48–61 | DOI | MR | Zbl

[19] R. Sengupta, S. Zhukovskiy, “Ekeland's Variational Principle for Functions Unbounded from below”, Discontinuity, Nonlinearity and Complexity, 9:4 (2020), 553–558 | DOI | Zbl

[20] S. Cobzas, “Completeness in quasi-metric spaces and Ekeland Variational Principle”, Topology and its Applications, 158:8 (2011), 1073–1084 | DOI | MR | Zbl