Ekeland variational principle for quasimetric spaces
Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 143, pp. 268-276

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study real-valued functions defined on quasimetric spaces. A generalization of Ekeland's variational principle and a similar statement from the article [S. Cobzas, “Completeness in quasi-metric spaces and Ekeland Variational Principle”, Topology and its Applications, vol. 158, no. 8, pp. 1073–1084, 2011] is obtained for them. The modification of the variational principle given here is applicable, in particular, to a wide class of functions unbounded from below. The result obtained is applied to the study the minima of functions defined on quasimetric spaces. A Caristi-type condition is formulated for conjugate-complete quasimetric spaces. It is shown that the proposed Caristi-type condition is a sufficient condition for the existence of a minimum for lower semicontinuous functions acting in conjugate-complete quasimetric spaces.
Keywords: Ekeland variational principle, functions unbounded from below.
Mots-clés : quasimetric spaces
@article{VTAMU_2023_28_143_a5,
     author = {R. Sengupta},
     title = {Ekeland variational principle for quasimetric spaces},
     journal = {Vestnik rossijskih universitetov. Matematika},
     pages = {268--276},
     publisher = {mathdoc},
     volume = {28},
     number = {143},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a5/}
}
TY  - JOUR
AU  - R. Sengupta
TI  - Ekeland variational principle for quasimetric spaces
JO  - Vestnik rossijskih universitetov. Matematika
PY  - 2023
SP  - 268
EP  - 276
VL  - 28
IS  - 143
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a5/
LA  - ru
ID  - VTAMU_2023_28_143_a5
ER  - 
%0 Journal Article
%A R. Sengupta
%T Ekeland variational principle for quasimetric spaces
%J Vestnik rossijskih universitetov. Matematika
%D 2023
%P 268-276
%V 28
%N 143
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a5/
%G ru
%F VTAMU_2023_28_143_a5
R. Sengupta. Ekeland variational principle for quasimetric spaces. Vestnik rossijskih universitetov. Matematika, Tome 28 (2023) no. 143, pp. 268-276. http://geodesic.mathdoc.fr/item/VTAMU_2023_28_143_a5/